Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37508794

ABSTRACT

Osteoarthritis (OA) is a degenerative joint disease causing loss of articular cartilage and structural damage in all joint tissues. Given the limited regenerative capacity of articular cartilage, methods to support the native structural properties of articular cartilage are highly anticipated. The aim of this study was to infiltrate zwitterionic monomer solutions into human OA-cartilage explants to replace lost proteoglycans. The study included polymerization and deposition of methacryloyloxyethyl-phosphorylcholine- and a novel sulfobetaine-methacrylate-based monomer solution within ex vivo human OA-cartilage explants and the encapsulation of isolated chondrocytes within hydrogels and the corresponding effects on chondrocyte viability. The results demonstrated that zwitterionic cartilage-hydrogel networks are formed by infiltration. In general, cytotoxic effects of the monomer solutions were observed, as was a time-dependent infiltration behavior into the tissue accompanied by increasing cell death and penetration depth. The successful deposition of zwitterionic hydrogels within OA cartilage identifies the infiltration method as a potential future therapeutic option for the repair/replacement of OA-cartilage extracellular suprastructure. Due to the toxic effects of the monomer solutions, the focus should be on sealing the OA-cartilage surface, instead of complete infiltration. An alternative treatment option for focal cartilage defects could be the usage of monomer solutions, especially the novel generated sulfobetaine-methacrylate-based monomer solution, as bionic for cell-based 3D bioprintable hydrogels.

2.
J Mech Behav Biomed Mater ; 37: 100-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24905178

ABSTRACT

The bond between methacrylic polymer adhesives and dental restoratives is not perfect and may fail either in the short or in the long term. This study aims to evaluate the effects of particle incorporation in a self-etch model adhesive on mechanical and physical properties that are relevant during application and service. Filled adhesives containing 5, 10, 15 or 25wt% glass fillers were compared to their unfilled counterpart in terms of water sorption and solubility; viscosity and dynamic viscosity during polymerization were recorded using rheological measurements and compared to FTIR analysis of the real-time degree of cure. Elastic modulus and ultimate tensile strength measurements were performed in uniaxial tension; the energy to fracture was used to calculate the fracture toughness of the adhesives. Finally, the experimental adhesives were applied on dentin substrate to test the bond strength using the microtensile test. Results showed that the incorporation of 5-10wt% nanofiller to self-etching dental adhesives is efficient in accelerating the polymerization reaction and increasing the degree of cure without compromising the film viscosity for good wettability or water sorption and solubility. Fillers increased the elastic modulus, tensile strength and fracture toughness to a plateau between 5 and 15wt% filler concentration, and despite the tendency to form agglomerations, active crack pinning/deflection toughening mechanisms have been observed. The bond strength between resin composite and dentin was also improved when adhesives with up to 10wt% fillers were used, with no additional improvements with further packing. The use of fillers to reinforce dental adhesives may therefore be of great practical benefit by improving curing and mechanical properties.


Subject(s)
Dental Cements/chemistry , Mechanical Phenomena , Nanoparticles/chemistry , Dentin/chemistry , Elastic Modulus , Glass/chemistry , Materials Testing , Solubility , Tensile Strength , Viscosity , Water/chemistry
3.
Int J Mol Sci ; 15(7): 11456-72, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24972140

ABSTRACT

Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE) is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys.


Subject(s)
Alloys/chemistry , Magnesium/chemistry , Corrosion
4.
Dent Mater ; 23(11): 1428-37, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17466365

ABSTRACT

OBJECTIVES: The purpose of this study was to establish a method to compare and classify dental alloys in relation to their resistance to corrosion. METHODS: Alloy samples and pure metal samples were prepared and tested in chemical and electrochemical corrosion according to ISO 10271. For electrochemical test, the rest potential versus time and a potentiodynamic scan were recorded. After chemical corrosion test, the ions released were analyzed by ICP (induced coupled plasma) spectroscopy. RESULTS: High gold alloys had a similar polarization curve than gold. The same effect was observed for Pd-base alloys, their curves were similar to the one of palladium. The ions released during chemical corrosion were non-precious metallic ions. Thereby Ni-Cr alloys were found to release the most ions. Au-Pt alloys showed the highest release of ions compared with other precious alloys but low compared with Ni-Cr. Electrochemical corrosion was more aggressive than chemical corrosion and every type of elements was etched, the higher the precious metal content, the higher the resistance to corrosion of the alloy. DISCUSSION: Using the recorded data, a classification system for electrochemical corrosion was developed and discussed to judge the results. Hereby were gold and zinc used as reference materials. The applied classification system defines five classes and it is proposed that alloys of class V are not acceptable. For chemical corrosion resistance, three classes were distinguished according to the quantity of metallic ions released and it is proposed that class III (100-1000 microg/cm(2)week) is not acceptable. Palladium and Pd-base alloys showed a higher electrochemical and chemical corrosion resistance than gold.


Subject(s)
Dental Alloys/chemistry , Dental Alloys/classification , Corrosion , Electrochemistry
5.
J Prosthet Dent ; 88(1): 44-9, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12239479

ABSTRACT

STATEMENT OF PROBLEMS: Computer-aided design/computer-assisted machining systems offer the possibility of fabricating restorations from one machinable ceramic block. Whether multishaded blocks improve esthetic results and are a viable alternative to individually stained ceramics has not been fully determined. PURPOSE: The aim of this investigation was to examine the effect of multishaded blocks on the esthetic appearance of all-ceramic CEREC crowns and compare these crowns with single-shade and stained restorations. MATERIAL AND METHODS: Ten subjects were included in this study. For each subject, 6 different crowns were milled with the use of a CEREC machine. One crown was milled from each of the following machinable ceramic materials: CEREC Vitablocs Mark II in classic colors; Vitablocs Mark II in 3D-Master colors; Vitablocs Mark II in either classic or 3D-Master colors, with additional staining; Megadenta Bloxx multishaded; Mark II experimental multilayer; and an experimental multilayer leucite ceramic. Three independent examiners assessed the esthetic appearance of crowns fabricated to match each subject's anterior tooth shade. A scale of 1 to 6 was used to score the shade match and esthetic adaptation of each crown, with 1 representing excellent characteristics and 3.5 serving as the threshold for clinical acceptability. The examiners' scores were averaged, and the mean values were analyzed with the Wilcoxon signed rank test (P

Subject(s)
Ceramics/chemistry , Crowns , Dental Materials/chemistry , Esthetics, Dental , Aluminum Silicates/chemistry , Color , Coloring Agents/chemistry , Computer-Aided Design , Dental Polishing , Dental Porcelain/chemistry , Dental Prosthesis Design , Humans , Observer Variation , Post and Core Technique , Statistics, Nonparametric , Surface Properties , Tooth, Nonvital/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...