Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychologia ; 189: 108670, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37633516

ABSTRACT

Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were largely age-invariant and did not vary, or varied minimally, according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have little impact on behavioral and neural estimates of familiarity.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Recognition, Psychology , Cognition , Temporal Lobe
2.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398000

ABSTRACT

Using fMRI, we investigated the effects of age and divided attention on the neural correlates of familiarity and their relationship with memory performance. At study, word pairs were visually presented to young and older participants under the requirement to make a relational judgment on each pair. Participants were then scanned while undertaking an associative recognition test under single and dual (auditory tone detection) task conditions. The test items comprised studied, rearranged (words from different studied pairs) and new word pairs. fMRI familiarity effects were operationalized as greater activity elicited by studied pairs incorrectly identified as 'rearranged' than by correctly rejected new pairs. The reverse contrast was employed to identify 'novelty' effects. Behavioral familiarity estimates were equivalent across age groups and task conditions. Robust fMRI familiarity effects were identified in several regions, including medial and superior lateral parietal cortex, dorsal medial and left lateral prefrontal cortex, and bilateral caudate. fMRI novelty effects were identified in the anterior medial temporal lobe. Both familiarity and novelty effects were age-invariant and did not vary according to task condition. In addition, the familiarity effects correlated positively with a behavioral estimate of familiarity strength irrespective of age. These findings extend a previous report from our laboratory, and converge with prior behavioral reports, in demonstrating that the factors of age and divided attention have minimal impact on behavioral and neural estimates of familiarity.

3.
Neuroimage ; 250: 118918, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35051582

ABSTRACT

Age-related decline in episodic memory has been partially attributed to older adults' reduced domain general processing resources. In the present study, we examined the effects of divided attention (DA) - a manipulation assumed to further deplete the already limited processing resources of older adults - on the neural correlates of recollection in young and older adults. Participants underwent fMRI scanning while they performed an associative recognition test in single and dual (tone detection) task conditions. Recollection effects were operationalized as greater BOLD activity elicited by test pairs correctly endorsed as 'intact' than pairs correctly or incorrectly endorsed as 'rearranged'. Detrimental effects of DA on associative recognition performance were identified in older but not young adults. The magnitudes of recollection effects did not differ between the single and dual (tone detection) tasks in either age group. Across the task conditions, age-invariant recollection effects were evident in most members of the core recollection network. However, while young adults demonstrated robust recollection effects in left angular gyrus, angular gyrus effects were undetectable in the older adults in either task condition. With the possible exception of this result, the findings suggest that DA did not influence processes supporting the retrieval and representation of associative information in either young or older adults, and converge with prior behavioral findings to suggest that episodic retrieval operations are little affected by DA.


Subject(s)
Auditory Perception/physiology , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Memory, Episodic , Adolescent , Adult , Aged , Female , Humans , Image Processing, Computer-Assisted , Male , Neuropsychological Tests , Texas
4.
Neuroimage Rep ; 1(3)2021 Sep.
Article in English | MEDLINE | ID: mdl-35434691

ABSTRACT

We examined whether post-retrieval monitoring processes supporting memory performance are more resource limited in older adults than younger individuals. We predicted that older adults would be more susceptible to an experimental manipulation that reduced the neurocognitive resources available to support post-retrieval monitoring. Young and older adults received transcranial magnetic stimulation (TMS) to the right dorsolateral prefrontal cortex (DLPFC) or a vertex control site during an associative recognition task. The right DLPFC was selected as a TMS target because the region is held to be a key member of a network of regions engaged during retrieval monitoring and is readily accessible to administration of TMS. We predicted that TMS to the right DLPFC would lead to reduced associative recognition accuracy, and that this effect would be more prominent in older adults. The results did not support this prediction. Recognition accuracy was significantly reduced in older adults relative to their younger counterparts, but the magnitude of this age difference was unaffected following TMS to the right DLPFC or vertex. These findings suggest that TMS to the right DLPFC was insufficient to deplete the neurocognitive resources necessary to support post-retrieval monitoring.

5.
Neurobiol Aging ; 97: 106-119, 2021 01.
Article in English | MEDLINE | ID: mdl-33190122

ABSTRACT

Post-retrieval monitoring is associated with engagement of anterior cingulate and dorsolateral prefrontal cortex. Recent fMRI studies reported age-invariant monitoring effects in these regions and an age-invariant correlation between these effects and memory performance. The present study examined monitoring effects during associative recognition (difference in activity elicited by 'rearranged' and 'intact' test pairs) under single and dual (tone detection) task conditions in young and older adults (Ns = 28 per group). It was predicted that, for the older adults only, dual tasking would attenuate memory performance and monitoring effects and weaken their correlation. Consistent with this prediction, in the older group imposition of the secondary task led to lower memory performance and elimination of the relationship between monitoring effects and performance. However, the size of the effects did not differ between single and dual task conditions. The findings suggest that the decline in older adults' memory performance in the dual task condition resulted not from impaired monitoring, but from a different cause that also weakened the dependence of performance on monitoring.


Subject(s)
Aging/psychology , Attention/physiology , Gyrus Cinguli/physiology , Memory, Episodic , Prefrontal Cortex/physiology , Aged , Aged, 80 and over , Female , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Neuropsychological Tests , Prefrontal Cortex/diagnostic imaging
6.
Neuropsychologia ; 140: 107394, 2020 03 16.
Article in English | MEDLINE | ID: mdl-32061829

ABSTRACT

In young adults, the neural correlates of successful recollection vary with the specificity (or amount) of information retrieved. We examined whether the neural correlates of recollection are modulated in a similar fashion in older adults. We compared event-related potential (ERP) correlates of recollection in samples of healthy young and older adults (N = 20 per age group). At study, participants were cued to make one of two judgments about each of a series of words. Subsequently, participants completed a memory test for studied and unstudied words in which they first made a Remember/Know/New (RKN) judgment, followed by a source memory judgment when a word attracted a 'Remember' (R) response. In young adults, the 'left parietal effect' - a putative ERP correlate of successful recollection - was largest for test items endorsed as recollected (R judgment) and attracting a correct source judgment, intermediate for items endorsed as recollected but attracting an incorrect or uncertain source judgment, and, relative to correct rejections, absent for items endorsed as familiar only (K judgment). In marked contrast, the left parietal effect was not detectable in older adults. Rather, regardless of source accuracy, studied items attracting an R response elicited a sustained, centrally maximum negative-going deflection relative to both correct rejections and studied items where recollection failed (K judgment). A similar retrieval-related negativity has been described previously in older adults, but the present findings are among the few to link this effect specifically to recollection. Finally, relative to correct rejections, all classes of correctly recognized old items elicited an age-invariant, late-onsetting positive deflection that was maximal over the right frontal scalp. This finding, which replicates several prior results, suggests that post-retrieval monitoring operations were engaged to an equivalent extent in the two age groups. Together, the present results suggest that there are circumstances where young and older adults engage qualitatively distinct retrieval-related processes during successful recollection.


Subject(s)
Evoked Potentials , Mental Recall , Aged , Cues , Humans , Judgment , Memory , Young Adult
7.
J Cogn Neurosci ; 30(6): 829-850, 2018 06.
Article in English | MEDLINE | ID: mdl-29488850

ABSTRACT

Prestimulus subsequent memory effects (preSMEs)-differences in neural activity elicited by a task cue at encoding that are predictive of later memory performance-are thought to reflect differential engagement of preparatory processes that benefit episodic memory encoding. We investigated age differences in preSMEs indexed by differences in ERP amplitude just before the onset of a study item. Young and older adults incidentally encoded words for a subsequent memory test. Each study word was preceded by a task cue that signaled a judgment to perform on the word. Words were presented for either a short (300 msec) or long (1000 msec) duration with the aim of placing differential benefits on engaging preparatory processes initiated by the task cue. ERPs associated with subsequent successful and unsuccessful recollection, operationalized here by source memory accuracy, were estimated time-locked to the onset of the task cue. In a late time window (1000-2000 msec after onset of the cue), young adults demonstrated frontally distributed preSMEs for both the short and long study durations, albeit with opposite polarities in the two conditions. This finding suggests that preSMEs in young adults are sensitive to perceived task demands. Although older adults showed no evidence of preSMEs in the same late time window, significant preSMEs were observed in an earlier time window (500-1000 msec) that was invariant with study duration. These results are broadly consistent with the proposal that older adults differ from their younger counterparts in how they engage preparatory processes during memory encoding.


Subject(s)
Aging , Brain/physiology , Evoked Potentials , Memory/physiology , Adult , Cues , Electroencephalography , Female , Humans , Male , Neuropsychological Tests , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...