Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Cycle ; 22(18): 2088-2096, 2023 09.
Article in English | MEDLINE | ID: mdl-37749911

ABSTRACT

Alcohol contributes to cellular accumulation of acetaldehyde, a primary metabolite of alcohol and a major human carcinogen. Acetaldehyde can form DNA adducts and induce interstrand crosslinks (ICLs) that are repaired by the Fanconi anemia DNA repair pathway (FA pathway). Individuals with deficiency in acetaldehyde detoxification or in the FA pathway have an increased risk of squamous-cell carcinomas (SCCs) including those of the esophagus. In a recent report, we described the molecular basis of acetaldehyde-induced DNA damage in esophageal keratinocytes [1]. We demonstrated that, at physiologically relevant concentrations, acetaldehyde induces DNA damage at the DNA replication fork. This resulted in replication stress, leading to activation of the ATR-Chk1-dependent cell cycle checkpoints. We also reported that the p53 DNA damage response is elevated in response to acetaldehyde and that the FA pathway limits acetaldehyde-induced genomic instability. Here, we highlight these findings and present additional results to discuss the role of the FA pathway and p53 DNA damage response in the protection against genomic instability and esophageal carcinogenesis.


Subject(s)
Acetaldehyde , Fanconi Anemia , Humans , Acetaldehyde/toxicity , Acetaldehyde/metabolism , Tumor Suppressor Protein p53/metabolism , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , DNA Damage , Ethanol , Genomic Instability , DNA Repair , Esophagus/metabolism , Keratinocytes/metabolism , DNA Replication
2.
Methods Mol Biol ; 2453: 317-343, 2022.
Article in English | MEDLINE | ID: mdl-35622334

ABSTRACT

In this method we illustrate how to amplify, sequence, and analyze antibody/immunoglobulin (IG) heavy-chain gene rearrangements from genomic DNA that is derived from bulk populations of cells by next-generation sequencing (NGS). We focus on human source material and illustrate how bulk gDNA-based sequencing can be used to examine clonal architecture and networks in different samples that are sequenced from the same individual. Although bulk gDNA-based sequencing can be performed on both IG heavy (IGH) or kappa/lambda light (IGK/IGL) chains, we focus here on IGH gene rearrangements because IG heavy chains are more diverse, tend to harbor higher levels of somatic hypermutations (SHM), and are more reliable for clone identification and tracking. We also provide a procedure, including code, and detailed instructions for processing and annotation of the NGS data. From these data we show how to identify expanded clones, visualize the overall clonal landscape, and track clonal lineages in different samples from the same individual. This method has a broad range of applications, including the identification and monitoring of expanded clones, the analysis of blood and tissue-based clonal networks, and the study of immune responses including clonal evolution.


Subject(s)
Gene Rearrangement , Immunoglobulin Heavy Chains , B-Lymphocytes , Clone Cells , DNA , Humans , Immunoglobulin Heavy Chains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...