Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 5122, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32198424

ABSTRACT

Nanosecond Pulsed Electric Fields (nsPEF) have the potential to treat a variety of cancer types including melanoma, pancreatic and lung squamous cancers. Recent studies show that nsPEF-based cancer therapy may be improved further with the assistance of moderate heating of the target. A feedback-looped heating system, utilizing a 980-nm fiber optic laser, was integrated into nsPEF electrodes for tumor ablation. The laser beam profile was determined to be Gaussian using a knife-edge technique. Thermal properties of the biological target were evaluated based on the treatment area, penetration depth and thermal distribution due to laser irradiation with or without nsPEF. Synergistic effects between nsPEF and the moderately elevated temperature at the target was observed, resulting in enhanced overall survival tumor regression up to 50% in the treatment of lung squamous cell cancer in mice.


Subject(s)
Carcinoma, Squamous Cell/radiotherapy , Infrared Rays/therapeutic use , Laser Therapy/methods , Lung Neoplasms/radiotherapy , Pulsed Radiofrequency Treatment/methods , Skin/radiation effects , Animals , Biomedical Engineering , Cell Line, Tumor , Female , Fiber Optic Technology , Hot Temperature/therapeutic use , Mice , Mice, Inbred DBA , Swine
2.
Bioelectrochemistry ; 125: 127-133, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30449324

ABSTRACT

Efficient gene delivery and expression in the skin can be a promising minimally invasive technique for therapeutic clinical applications for immunotherapy, vaccinations, wound healing, cancer, and peripheral artery disease. One of the challenges for efficient gene electrotransfer (GET) to skin in vivo is confinement of expression to the epithelium. Another challenge involves tissue damage. Optimizing gene expression profiles, while minimizing tissue damage are necessary for therapeutic applications. Previously, we established that heating pretreatment to 43 °C enhances GET in vitro. We observed a similar trend in vivo, with an IR-pretreatment for skin heating prior to GET. Currently, we tested a range of GET conditions in vivo in guinea pigs with and without preheating the skin to ~43 °C. IR-laser heating and conduction heating were tested in conjunction with GET. In vivo electrotransfer to the skin by moderately elevating tissue temperature can lead to enhanced gene expression, as well as achieve gene transfer in epidermal, dermal, hypodermal and muscle tissue layers.


Subject(s)
DNA/administration & dosage , Electroporation/instrumentation , Gene Transfer Techniques/instrumentation , Plasmids/administration & dosage , Animals , DNA/genetics , DNA/pharmacokinetics , Female , Gene Expression , Guinea Pigs , Heating , Plasmids/genetics , Plasmids/pharmacokinetics , Skin/metabolism
3.
Technol Cancer Res Treat ; 17: 1533033818802305, 2018 01 01.
Article in English | MEDLINE | ID: mdl-30253713

ABSTRACT

Nanosecond pulse stimulation as a tumor ablation therapy has been studied for the treatment of various carcinomas in animal models and has shown a significant survival benefit. In the current study, we found that moderate heating at 43°C for 2 minutes significantly enhanced in vitro nanosecond pulse stimulation-induced cell death of KLN205 murine squamous cell carcinoma cells by 2.43-fold at 600 V and by 2.32-fold at 900 V, as evidenced by propidium iodide uptake. Furthermore, the ablation zone in KLN205 cells placed in a 3-dimensional cell-culture model and pulsed at a voltage of 900 V at 43°C was 3 times larger than in cells exposed to nanosecond pulse stimulation at room temperature. Application of moderate heating alone did not cause cell death. A nanosecond pulse stimulation electrode with integrated controllable laser heating was developed to treat murine ectopic squamous cell carcinoma. With this innovative system, we were able to quickly heat and maintain the temperature of the target tumor at 43°C during nanosecond pulse stimulation. Nanosecond pulse stimulation with moderate heating was shown to significantly extend overall survival, delay tumor growth, and achieve a high rate of complete tumor regression. Moderate heating extended survival nearly 3-fold where median overall survival was 22 days for 9.8 kV without moderate heating and over 63 days for tumors pulsed with 600, 100 ns pulses at 5 Hz, at voltage of 9.8 kV with moderate heating. Median overall survival in the control groups was 24 and 31 days for mice with untreated tumors and tumors receiving moderate heat alone, respectively. Nearly 69% (11 of 16) of tumor-bearing mice treated with nanosecond pulse stimulation with moderate heating were tumor free at the completion of the study, whereas complete tumor regression was not observed in the control groups and in 9.8 kV without moderate heating. These results suggest moderate heating can reduce the necessary applied voltage for tumor ablation with nanosecond pulse stimulation.


Subject(s)
Carcinoma, Squamous Cell/therapy , Electroporation/methods , Hot Temperature/therapeutic use , Laser Therapy , Animals , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Disease Models, Animal , Humans , Mice
4.
Cancers (Basel) ; 10(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29954062

ABSTRACT

A Pancreatic cancer is a notorious malignant neoplasm with an extremely poor prognosis. Current standard of care is rarely effective against late-stage pancreatic cancer. In this study, we assessed nanopulse stimulation (NPS) as a local treatment for pancreatic cancer in a syngeneic mouse Pan02 pancreatic cancer model and characterized corresponding changes in the immune profile. A single NPS treatment either achieved complete tumor regression or prolonged overall survival in animals with partial tumor regression. While this is very encouraging, we also explored if this local ablation effect could also result in immune stimulation, as was observed when NPS led to the induction of immune-mediated protection from a second tumor challenge in orthotopic mouse breast and rat liver cancer models. In the Pan02 model, there were insufficient abscopal effects (1/10) and vaccine-like protective effects (1/15) suggesting that NPS-induced immune mechanisms in this model were limited. To evaluate this further, the immune landscape was analyzed. The numbers of both T regulatory cells (Tregs) and myeloid derived suppressor cells (MDSCs) in blood were significantly reduced, but memory (CD44⁺) T-cells were absent. Furthermore, the numbers of Tregs and MDSCs did not reduce in spleens compared to tumor-bearing mice. Very few T-cells, but large numbers of MDSCs were present in the NPS treated tumor microenvironment (TME). The number of dendritic cells in the TME was increased and multiple activation markers were upregulated following NPS treatment. Overall, NPS treatments used here are effective for pancreatic tumor ablation, but require further optimization for induction of immunity or the need to include effective combinational NPS therapeutic strategy for pancreatic cancer.

5.
Sci Rep ; 7(1): 11767, 2017 09 18.
Article in English | MEDLINE | ID: mdl-28924200

ABSTRACT

Irreversible electroporation (IRE) as a non-thermal tumor ablation technology has been studied for the treatment of pancreatic carcinoma and has shown a significant survival benefit. We discovered that moderate heating (MH) at 43 °C for 1-2 minutes significantly enhanced ex vivo IRE tumor ablation of Pan02 cells by 5.67-fold at 750 V/cm and by 1.67-fold at 1500 V/cm. This amount of heating alone did not cause cell death. An integrated IRE system with controllable laser heating and tumor impedance monitoring was developed to treat mouse ectopic pancreatic cancer. With this novel IRE system, we were able to heat and maintain the temperature of a targeted tumor area at 42 °C during IRE treatment. Pre-heating the tumor greatly reduced the impedance of tumor and its fluctuation. Most importantly, MHIRE has been demonstrated to significantly extend median survival and achieve a high rate of complete tumor regression. Median survival was 43, 46 and 84 days, for control, IRE with 100 µs, 1 Hz, 90 pulses and electric fields 2000-2500 V/cm and MHIRE treatment respectively. 55.6% of tumor-bearing mice treated with MHIRE were tumor-free, whereas complete tumor regression was not observed in the control and IRE treatment groups.


Subject(s)
Hyperthermia, Induced/instrumentation , Hyperthermia, Induced/methods , Neoplasms, Experimental/therapy , Pancreatic Neoplasms/therapy , Animals , Cell Line, Tumor , Female , Mice , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...