Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Ergon ; 106: 103909, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36242872

ABSTRACT

The use of robotic swarms has become increasingly common in research, industrial, and military domains for tasks such as collective exploration, coordinated movement, and collective localization. Despite the expanded use of robotic swarms, little is known about how swarms are perceived by human operators. To characterize human-swarm interactions, we evaluate how operators perceive swarm characteristics, including movement patterns, control schemes, and occlusion. In a series of experiments manipulating movement patterns and control schemes, participants tracked swarms on a computer screen until they were occluded from view, at which point participants were instructed to estimate the spatiotemporal dynamics of the occluded swarm by mouse click. In addition to capturing mouse click responses, eye tracking was used to capture participants eye movements while visually tracking swarms. We observed that manipulating control schemes had minimal impact on the perception of swarms, and that swarms are easier to track when they are visible compared to when they were occluded. Regarding swarm movements, a complex pattern of data emerged. For example, eye tracking indicates that participants more closely track a swarm in an arc pattern compared to sinusoid and linear movement patterns. When evaluating behavioral click-responses, data show that time is underestimated, and that spatial accuracy is reduced in complex patterns. Results suggest that measures of performance may capture different patterns of behavior, underscoring the need for multiple measures to accurately characterize performance. In addition, the lack of generalizable data across different movement patterns highlights the complexity involved in the perception of swarms of objects.


Subject(s)
Movement , Robotics , Humans , Motion , Eye Movements
2.
Front Psychol ; 11: 1663, 2020.
Article in English | MEDLINE | ID: mdl-32903573

ABSTRACT

Emotional states are thought to influence athletic performance. Emotions characterized by high arousal enhance exercise performance. Extant research has focused on the valence and arousal dimensions of emotions, but not whether the motivational dimension (the extent to which the emotion engenders approach or avoidance behaviors) influences exercise performance. Two studies aimed to determine whether films and music chosen to induce approach- (i.e., anger), avoidance- (i.e., fear), and neutral-oriented emotions would successfully induce their intended emotional states (Study 1) and whether anger and fear emotion inductions would influence 2-mile time trial performance (Study 2). In Study 1, the films and music successfully induced their intended emotions. In Study 2, run time and perceived level of exertion did not differ between emotions across all participants or among faster running participants per a median split. However, among slower running participants, the anger induction increased the 2-mile running speed relative to the neutral induction. These findings suggest that emotions eliciting approach-related motivational states may improve exercise performance, particularly in slower runners.

3.
Brain Cogn ; 128: 80-88, 2018 12.
Article in English | MEDLINE | ID: mdl-30414699

ABSTRACT

Retrieval practice involves repeatedly testing a student during the learning experience, reliably conferring learning advantages relative to repeated study. Transcranial direct current stimulation (tDCS) of the left dorsolateral prefrontal cortex (dlPFC) has also been shown to confer learning advantages for verbal memory, though research is equivocal. The present study examined the effects of retrieval versus study practice with or without left dlPFC tDCS on verbal episodic memory. Participants (N = 150) experienced either retrieval practice or study practice, and active anodal, active cathodal, or sham tDCS while encoding word lists, and then returned two days later for a final recall test. Three primary patterns emerged: first, during encoding, tDCS did not influence recall rates in the retrieval practice group. Second, during final recall, participants in the retrieval practice groups recalled more than those in the study practice groups. Finally, during final recall, anodal tDCS decreased recall relative to sham and cathodal stimulation, suggesting that it interfered with developing highly detailed memories that could be relied upon for subsequent recollection. Data support existing research demonstrating the effectiveness of retrieval practice as a learning strategy, but also suggest that anodal dlPFC stimulation can induce long-term negative impacts on verbal episodic memory retrieval.


Subject(s)
Memory, Long-Term/physiology , Mental Recall/physiology , Practice, Psychological , Prefrontal Cortex/physiology , Transcranial Direct Current Stimulation , Adult , Female , Humans , Male
4.
Appl Ergon ; 73: 1-6, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30098624

ABSTRACT

Target visual salience and biological motion independently influence the accuracy and latency of observer detection. However, it is currently unknown how these target parameters might interact in modulating the detectability of camouflaged human targets. In two experiments, observers performed a visual target detection task. In a pilot experiment, observers detected a static human target with parametrically varied visual salience, superimposed on a complex background scene. As expected, results demonstrated varied target detectability as a function of salience, with observers showing higher hit rates and faster response times as a function of increased salience. In the Main Experiment, observers detected simulated human targets walking across a complex scene at five different speeds and three different levels of visual salience (as validated in the pilot experiment). We found strong effects of both movement rate and visual salience, and the two parameters interacted. Specifically, increasing the rate of biological motion increased detectability for even the least salient camouflage patterns. In other words, biological motion can "break" even the least conspicuous camouflage pattern. In contrast, a very salient pattern was highly detectable under static and moving conditions. Results are considered in relation to theories of camouflage detectability, and trade-offs between camouflage development efforts versus advanced training in military maneuvering.


Subject(s)
Movement , Pattern Recognition, Visual , Visual Perception , Adolescent , Adult , Female , Humans , Male , Motion Perception , Reaction Time , Task Performance and Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...