Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Age Ageing ; 53(Supplement_2): ii13-ii19, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38745486

ABSTRACT

BACKGROUND: Emerging evidence suggests health-promoting properties of increased protein intake. There is increased interest in plant protein but a dearth of information in relation to its impact on muscle function. The objective of the present work was to examine the impact of intake of different types of proteins on muscle functional parameters including handgrip strength, biomarkers of metabolic health, sleep quality and quality of life in a group of older adults. METHODS: Healthy men and women aged 50 years and older entered a double-blinded, randomised, controlled nutritional intervention study with three parallel arms: high plant protein, high dairy protein and low protein. Participants consumed once daily a ready-to-mix shake (containing 20 g of protein in high protein groups) for 12 weeks. Changes in handgrip and leg strength, body composition, metabolic health, quality of life and sleep quality were analysed by linear mixed models in an intention-to-treat approach. RESULTS: Eligible participants (n = 171) were randomly assigned to the groups (plant: n = 60, dairy: n = 56, low protein: n = 55) and 141 completed the study. Handgrip strength increased after the intervention (Ptime = 0.038), with no significant difference between the groups. There was no significant difference between groups for any other health outcomes. CONCLUSIONS: In a population of older adults, increasing protein intake by 20 g daily for 12 weeks (whether plant-based or dairy-based) did not result in significant differences in muscle function, body composition, metabolic health, sleep quality or quality of life, compared with the low protein group.


Subject(s)
Body Composition , Hand Strength , Quality of Life , Sleep , Humans , Male , Female , Double-Blind Method , Aged , Middle Aged , Sleep/physiology , Plant Proteins, Dietary/administration & dosage , Dietary Proteins/administration & dosage , Muscle, Skeletal/physiology , Time Factors , Age Factors , Diet, High-Protein , Nutritional Status
2.
Sports Med ; 53(12): 2373-2398, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37632665

ABSTRACT

BACKGROUND: Resting metabolic rate (RMR) prediction equations are often used to calculate RMR in athletes; however, their accuracy and precision can vary greatly. OBJECTIVE: The aim of this systematic review and meta-analysis was to determine which RMR prediction equations are (i) most accurate (average predicted values closest to measured values) and (ii) most precise (number of individuals within 10% of measured value). DATA SOURCES: A systematic search of PubMed, CINAHL, SPORTDiscus, Embase, and Web of Science up to November 2021 was conducted. ELIGIBILITY CRITERIA: Randomised controlled trials, cross-sectional observational studies, case studies or any other study wherein RMR, measured by indirect calorimetry, was compared with RMR predicted via prediction equations in adult athletes were included. ANALYSIS: A narrative synthesis and random-effects meta-analysis (where possible) was conducted. To explore heterogeneity and factors influencing accuracy, subgroup analysis was conducted based on sex, body composition measurement method, athlete characteristics (athlete status, energy availability, body weight), and RMR measurement characteristics (adherence to best practice guidelines, test preparation and prior physical activity). RESULTS: Twenty-nine studies (mixed sports/disciplines n = 8, endurance n = 5, recreational exercisers n = 5, rugby n = 3, other n = 8), with a total of 1430 participants (822 F, 608 M) and 100 different RMR prediction equations were included. Eleven equations satisfied criteria for meta-analysis for accuracy. Effect sizes for accuracy ranged from 0.04 to - 1.49. Predicted RMR values did not differ significantly from measured values for five equations (Cunningham (1980), Harris-Benedict (1918), Cunningham (1991), De Lorenzo, Ten-Haaf), whereas all others significantly underestimated or overestimated RMR (p < 0.05) (Mifflin-St. Jeor, Owen, FAO/WHO/UNU, Nelson, Koehler). Of the five equations, large heterogeneity was observed for all (p < 0.05, I2 range: 80-93%) except the Ten-Haaf (p = 0.48, I2 = 0%). Significant differences between subgroups were observed for some but not all equations for sex, athlete status, fasting status prior to RMR testing, and RMR measurement methodology. Nine equations satisfied criteria for meta-analysis for precision. Of the nine equations, the Ten-Haaf was found to be the most precise, predicting 80.2% of participants to be within ± 10% of measured values with all others ranging from 40.7 to 63.7%. CONCLUSION: Many RMR prediction equations have been used in athletes, which can differ widely in accuracy and precision. While no single equation is guaranteed to be superior, the Ten-Haaf (age, weight, height) equation appears to be the most accurate and precise in most situations. Some equations are documented as consistently underperforming and should be avoided. Choosing a prediction equation based on a population of similar characteristics (physical characteristics, sex, sport, athlete status) is preferable. Caution is warranted when interpreting RMR ratio of measured to predicted values as a proxy of energy availability from a single measurement. PROSPERO REGISTRATION: CRD42020218212.


Subject(s)
Basal Metabolism , Sports , Adult , Humans , Cross-Sectional Studies , Athletes , Body Composition , Body Mass Index
3.
Antioxidants (Basel) ; 11(8)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35892637

ABSTRACT

The imbalance between reactive oxygen species (ROS) production and antioxidant defense systems leads to macromolecule and tissue damage as a result of cellular oxidative stress. This phenomenon is considered a key factor in fatigue and muscle damage following chronic or high-intensity physical exercise. In the present study, the antioxidant effect of Moringa oleifera leaf extract (MOLE) was evaluated in C2C12 myotubes exposed to an elevated hydrogen peroxide (H2O2) insult. The capacity of the extract to influence the myotube redox status was evaluated through an analysis of the total antioxidant capacity (TAC), glutathione homeostasis (GSH and GSSG), total free thiols (TFT), and thioredoxin (Trx) activity, as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and transferase (GST). Moreover, the ability of MOLE to mitigate the stress-induced peroxidation of lipids and oxidative damage (TBARS and protein carbonyls) was also evaluated. Our data demonstrate that MOLE pre-treatment mitigates the highly stressful effects of H2O2 in myotubes (1 mM) by restoring the redox status (TFT, Trx, and GSH/GSSG ratio) and increasing the antioxidant enzymatic system (CAT, SOD, GPx, GST), thereby significantly reducing the TBARs and PrCAR levels. Our study provides evidence that MOLE supplementation has antioxidant potential, allowing myotubes better able to cope with an oxidative insult and, therefore, could represent a useful nutritional strategy for the preservation of muscle well-being.

4.
J Strength Cond Res ; 36(3): 845-850, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-32358308

ABSTRACT

ABSTRACT: O'Neill, JERG, Walsh, CS, McNulty, SJ, Gantly, HC, Corish, ME, Crognale, D, and Horner, K. Resting metabolic rate in female rugby players: differences in measured versus predicted values. J Strength Cond Res 36(3): 845-850, 2022-This study investigated (a) the accuracy of resting metabolic rate (RMR) prediction equations in female rugby players and (b) factors that might explain poor prediction accuracy in some individuals. Resting metabolic rate was assessed in 36 female elite and subelite rugby players (age: 18-35 years, fat-free mass (FFM): 43-63 kg, fat mass %: 15-41%). After pretest standardization (24-hour exercise avoidance and 12-hour overnight fast), RMR was measured by indirect calorimetry and compared with predicted values determined by Harris-Benedict, Cunningham, Ten Haaf, Jagim and Watson equations. Body composition was assessed by air displacement plethysmography, muscle damage indicated by creatine kinase, and risk of low energy availability (LEA) by LEA in Females Questionnaire. Measured RMR was 1,651 ± 167 kcal·d-1. The Cunningham, Ten Haaf, and Watson (body mass) predicted values did not differ from measured (p > 0.05), while all other predicted values differed significantly (p < 0.001). Individually, prediction accuracy to within 10% varied widely depending on the equation used (range 44% [n = 16] to 86% [n = 31]). Three of the 5 individuals whose values were outside 10% of the measured value using the best performing Ten Haaf FFM equation could be explained by muscle damage or LEA. These measures may be useful to assist in understanding why measured RMR may be lower or higher than predicted in some athletes. Overall, the Ten Haaf equations showed the best accuracy, suggesting these equations may be most suitable for this population. The findings demonstrate the importance of considering the population studied when determining the most appropriate prediction equation to use.


Subject(s)
Basal Metabolism , Rugby , Adolescent , Adult , Body Composition , Body Mass Index , Calorimetry, Indirect , Energy Metabolism , Female , Humans , Plethysmography , Young Adult
5.
Nutrients ; 15(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615694

ABSTRACT

Plant-based proteins are generally characterised by lower Indispensable Amino Acid (IAA) content, digestibility, and anabolic properties, compared to animal-based proteins. However, they are environmentally friendlier, and wider consumption is advocated. Older adults have higher dietary protein needs to prevent sarcopenia, a disease marked by an accelerated loss of muscle mass and function. Given the lower environmental footprint of plant-based proteins and the importance of optimising dietary protein quality among older adults, this paper aims to assess the net peripheral Amino Acid (AA) appearance after ingestion of three different plant protein and fibre (PPF) products, compared to whey protein with added fibre (WPF), in healthy older adults. In a randomised, single-blind, crossover design, nine healthy men and women aged ≥65 years consumed four test meals balanced in AA according to the FAO reference protein for humans, matched for leucine, to optimally stimulate muscle protein synthesis in older adults. A fasted blood sample was drawn at each visit before consuming the test meal, followed by postprandial arterialise blood sampling every 30 min for 3 h. The test meal was composed of a soup containing either WPF or PPF 1-3. The PPF blends comprised pea proteins with varying additional rice, pumpkin, soy, oat, and/or almond protein. PPF product ingestion resulted in a lower maximal increase of postprandial leucine concentration and the sum of branched-chain AA (BCAA) and IAA concentrations, compared to WPF, with no effect on their incremental area under the curve. Plasma methionine and cysteine, and to a lesser extent threonine, appearance were limited after consuming the PPF products, but not WPF. Despite equal leucine doses, the WPF induced greater postprandial insulin concentrations than the PPF products. In conclusion, the postprandial appearance of AA is highly dependent on the protein source in older adults, despite providing equivalent IAA levels and dietary fibre. Coupled with lower insulin concentrations, this could imply less anabolic potential. Further investigation is required to understand the applicability of plant-based proteins in healthy older adults.


Subject(s)
Amino Acids , Plant Proteins , Male , Animals , Humans , Female , Aged , Leucine , Whey Proteins , Single-Blind Method , Dietary Proteins/metabolism , Insulin , Eating , Postprandial Period
6.
Nutrients ; 13(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34371858

ABSTRACT

Frailty is a syndrome of growing importance given the global ageing population. While frailty is a multifactorial process, poor nutritional status is considered a key contributor to its pathophysiology. As nutrition is a modifiable risk factor for frailty, strategies to prevent and treat frailty should consider dietary change. Observational evidence linking nutrition with frailty appears most robust for dietary quality: for example, dietary patterns such as the Mediterranean diet appear to be protective. In addition, research on specific foods, such as a higher consumption of fruit and vegetables and lower consumption of ultra-processed foods are consistent, with healthier profiles linked to lower frailty risk. Few dietary intervention studies have been conducted to date, although a growing number of trials that combine supplementation with exercise training suggest a multi-domain approach may be more effective. This review is based on an interdisciplinary workshop, held in November 2020, and synthesises current understanding of dietary influences on frailty, focusing on opportunities for prevention and treatment. Longer term prospective studies and well-designed trials are needed to determine the causal effects of nutrition on frailty risk and progression and how dietary change can be used to prevent and/or treat frailty in the future.


Subject(s)
Diet, Healthy/methods , Diet/adverse effects , Frailty/prevention & control , Malnutrition/diet therapy , Nutritional Status , Aged , Aged, 80 and over , Aging/physiology , Causality , Feeding Behavior/physiology , Female , Frail Elderly , Frailty/etiology , Humans , Male , Malnutrition/complications , Malnutrition/physiopathology
7.
Molecules ; 26(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34443628

ABSTRACT

Moringa oleifera is a multi-purpose herbal plant with numerous health benefits. In skeletal muscle cells, Moringa oleifera leaf extract (MOLE) acts by increasing the oxidative metabolism through the SIRT1-PPARα pathway. SIRT1, besides being a critical energy sensor, is involved in the activation related to redox homeostasis of transcription factors such as the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present study was to evaluate in vitro the capacity of MOLE to influence the redox status in C2C12 myotubes through the modulation of the total antioxidant capacity (TAC), glutathione levels, Nrf2 and its target gene heme oxygenase-1 (HO-1) expression, as well as enzyme activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and transferase (GST). Moreover, the impact of MOLE supplementation on lipid peroxidation and oxidative damage (i.e., TBARS and protein carbonyls) was evaluated. Our results highlight for the first time that MOLE increased not only Nrf2 and HO-1 protein levels in a dose-dependent manner, but also improved glutathione redox homeostasis and the enzyme activities of CAT, SOD, GPx and GST. Therefore, it is intriguing to speculate that MOLE supplementation could represent a valuable nutrition for the health of skeletal muscles.


Subject(s)
Heme Oxygenase-1/metabolism , Membrane Proteins/metabolism , Moringa oleifera/chemistry , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Up-Regulation/drug effects , Animals , Antioxidants/metabolism , Catalase/metabolism , Cell Line , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Homeostasis/drug effects , Lipid Peroxidation/drug effects , Mice , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects , Superoxide Dismutase/metabolism , Transcription Factors/metabolism
8.
J Sports Sci ; 39(23): 2735-2745, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34304689

ABSTRACT

Functional Threshold Power (FTP) in cycling is increasingly used in exercise prescription, particularly with the rise in use of home trainers and virtual exercise platforms. FTP testing does not require biological sampling and is considered a more practical test than others. This scoping review investigated what is known about the 20-minute FTP (FTP20) test. A three-step search strategy was used to identify studies in relevant databases (PubMed, CINAHL, SportDiscus, Google Scholar, Web of Science) and grey literature. Data were extracted and common themes identified which allowed for descriptive analysis and thematic summary. Fifteen studies were included. The primary focus fitted broadly into four themes: reliability, association with other physiological markers, other power-related concepts and performance prediction. The FTP20 test was reported as a reliable test. Studies investigating the relationship of FTP20 with other physiological markers and power-related concepts reported large limits of agreement suggesting parameters cannot be used interchangeably. Some findings indicate that FTP20 may be useful in performance prediction. The majority of studies involved trained male cyclists. Overall, existing literature on the FTP20 test is limited. Further investigation is needed to provide physiological justification for FTP20 and inform use in exercise prescription in a range of populations.


Subject(s)
Exercise Test , Oxygen Consumption , Bicycling , Exercise , Humans , Male , Reproducibility of Results
9.
Front Nutr ; 8: 654902, 2021.
Article in English | MEDLINE | ID: mdl-34124120

ABSTRACT

Background/Objectives: Characterizing compensatory and adaptive responses to exercise assists in understanding changes in energy balance and health outcomes with exercise interventions. This study investigated the effects of a short-term exercise intervention (combining high intensity interval (HII) and continuous exercise) on (1) gastric emptying, appetite and energy intake; and (2) other adaptive responses including cardiorespiratory fitness, in inactive men with overweight/obesity. Methods: Fifteen men (BMI: 29.7 ± 3.3 kg/m-2) completed a 4-wk supervised exercise intervention, consisting of 5 exercise sessions per week alternating between HII (30 s at 100% VO2max followed by 30 s recovery) and continuous (at 50% VO2max) training on a cycle ergometer, progressing from 30 to 45 min session duration. Gastric emptying (13C-octanoic acid breath test), appetite (visual analog scale), energy intake (ad libitum lunch meal), body composition (air displacement plethysmography), non-exercise activity (accelerometery) VO2max, blood pressure, and fasting concentrations of glucose, insulin, and ghrelin were measured before and after (≥48 h) the intervention. Results: Gastric emptying, glucose, insulin and ghrelin were unchanged, but energy intake at the ad libitum lunch test meal significantly increased at post-intervention (+171 ± 116 kcal, p < 0.01). Body weight (-0.9 ± 1.1 kg), waist circumference (-2.3 ± 3.5 cm) and percent body fat (-0.9 ± 1.1%) were modestly reduced (P < 0.05). VO2max increased (+4.4 ± 2.1 ml.kg.min-1) by 13% and systolic (-6.2 ± 8.4 mmHg) and diastolic (-5.8 ± 2.2 mmHg) blood pressure were significantly reduced (P ≤ 0.01 for all). Conclusions: Four weeks of exercise training did not alter gastric emptying, indicating gastric emptying may only adapt to a higher volume/longer duration of exercise or changes in other characteristics associated with regular exercise. The combination of HII and continuous exercise training had beneficial effects on body composition, cardiorespiratory fitness, and blood pressure and warrants further investigation in larger randomized controlled trials.

10.
Adv Nutr ; 12(2): 490-502, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33037427

ABSTRACT

Protein supplementation is an attractive strategy to prevent loss of muscle mass in older adults. However, it could be counterproductive due to adverse effects on appetite. This systematic review and meta-analysis aimed to determine the effects of protein supplementation on appetite and/or energy intake (EI) in healthy older adults. MEDLINE, The Cochrane Library, CINAHL, and Web of Science were searched up to June 2020. Acute and longitudinal studies in healthy adults ≥60 y of age that reported effects of protein supplementation (through supplements or whole foods) compared with control and/or preintervention (for longitudinal studies) on appetite ratings, appetite-related peptides, and/or EI were included. Random-effects model meta-analysis was performed on EI, with other outcomes qualitatively reviewed. Twenty-two studies (9 acute, 13 longitudinal) were included, involving 857 participants (331 males, 526 females). In acute studies (n = 8), appetite ratings were suppressed in 7 out of 24 protein arms. For acute studies reporting EI (n = 7, n = 22 protein arms), test meal EI was reduced following protein preload compared with control [mean difference (MD): -164 kJ; 95% CI: -299, -29 kJ; P  = 0.02]. However, when energy content of the supplement was accounted for, total EI was greater with protein compared with control (MD: 649 kJ; 95% CI: 438, 861 kJ; P < 0.00001). Longitudinal studies (n = 12 protein arms) showed a higher protein intake (MD: 0.29 g ⋅ kg-1 ⋅ d-1; 95% CI: 0.14, 0.45 g ⋅ kg-1 ⋅ d-1; P < 0.001) and no difference in daily EI between protein and control groups at the end of trials (MD: -54 kJ/d; 95% CI: -300, 193 kJ/d; P  = 0.67). While appetite ratings may be suppressed with acute protein supplementation, there is either a positive effect or no effect on total EI in acute and longitudinal studies, respectively. Therefore, protein supplementation may represent an effective solution to increase protein intakes in healthy older adults without compromising EI through appetite suppression. This trial was registered at PROSPERO as https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019125771 (CRD42019125771).


Subject(s)
Appetite , Energy Intake , Aged , Appetite Regulation , Dietary Supplements , Female , Humans , Male , Meals
11.
Int J Exerc Sci ; 13(4): 1041-1051, 2020.
Article in English | MEDLINE | ID: mdl-32922640

ABSTRACT

This study investigated the reproducibility of objective and subjective parameters of recovery pre- and post-exercise in college-aged male athletes. Thirteen male (aged 19-22y) team sport players were assessed for a range of recovery markers before and 24 hours after a repeated sprint protocol. An identical procedure was followed one week later. Participants undertook two objective tests: creatine kinase (CK) and countermovement jump (CMJ) height; and two subjective tests: visual analogue scale (VAS) for muscle soreness and 5-item well-being questionnaire (WB). Coefficients of variation (CV) of CMJ and WB were lowest of all markers studied both pre (4.0% and 5.9%) and 24 hours post (7.7% and 7.1%) exercise, respectively. The CV of a single CMJ showed the highest reproducibility pre-exercise (4.0%) compared to taking the best or average of 2 or 3 jumps. Both CK and VAS had a high CV at pre (25.6% and 49.2%) and 24 hours post (44.5% and 44.8%) exercise. Moreover, while there was no difference between the change in CMJ, WB and VAS in response to exercise between weeks, the increase in CK was greater after the first compared to second exercise bout (mean 199.6 U/L vs 10.6 U/L change, p = 0.001), indicating a repeated bout effect. CK and VAS demonstrated poor reproducibility. However, single CMJ height and the WB questionnaire demonstrated a high reproducibility pre- and post-exercise and represent simple time-efficient objective and subjective methods to monitor recovery in this population.

12.
Nutr Res Rev ; 33(2): 271-286, 2020 12.
Article in English | MEDLINE | ID: mdl-32138805

ABSTRACT

Knowing the biological signals associated with appetite control is crucial for understanding the regulation of food intake. Biomarkers of appetite have been defined as physiological measures that relate to subjective appetite ratings, measured food intake, or both. Several metabolites including amino acids, lipids and glucose were proposed as key molecules associated with appetite control over 60 years ago, and along with bile acids are all among possible appetite biomarker candidates. Additional metabolites that have been associated with appetite include endocannabinoids, lactate, cortisol and ß-hydroxybutyrate. However, although appetite is a complex integrative process, studies often investigated a limited number of markers in isolation. Metabolomics involves the study of small molecules or metabolites present in biological samples such as urine or blood, and may present a powerful approach to further the understanding of appetite control. Using multiple analytical techniques allows the characterisation of molecules, such as carbohydrates, lipids, amino acids, bile acids and fatty acids. Metabolomics has proven successful in identifying markers of consumption of certain foods and biomarkers implicated in several diseases. However, it has been underexploited in appetite control or obesity. The aim of the present narrative review is to: (1) provide an overview of existing metabolites that have been identified in human biofluids and associated with appetite control; and (2) discuss the potential of metabolomics to deepen understanding of appetite control in humans.


Subject(s)
Appetite Regulation , Eating , Energy Intake , Feeding Behavior , Metabolomics/methods , Nutrients/metabolism , Obesity , Appetite , Biomarkers/metabolism , Humans , Obesity/etiology , Obesity/metabolism
13.
Int J Sports Med ; 40(8): 511-518, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31288290

ABSTRACT

External counterpulsation (ECP), an electrocardiogram-led sequential compression of lower limbs, has been recently proposed for sports recovery, but research is scant. This study examined the effects of an ECP session upon neuromuscular function (vertical jump and torque/velocity characteristics), biochemical responses (creatine kinase, cortisol, testosterone, alpha-amylase and immunoglobulin-A), and muscle soreness (visual analogue scale) following high-intensity exercise. Twenty-one male team sport athletes (age: 21.6±3.4 yrs; height: 182.7±7.3 cm; body mass: 82.7±9.3 kg) recovered from the fatiguing exercise using either ECP or rest. Data collection was conducted at three separate time points: upon arrival (Pre), post-recovery (Post), and 24 h post-recovery (24hPost). Significant main effects for time were observed for increased torque/velocity slope and for decreased isometric extension peak torque (p<0.001). Significant main effects for time were observed for increased creatine kinase, testosterone, alpha-amylase, and muscle soreness (all p<0.001). Significant interaction effects were observed at post-testing following ECP: Cortisol release and the related decline in testosterone/cortisol ratio were attenuated, and immunoglobulin-A was increased following ECP in comparison to the control (all p<0.05). Following high-intensity exercise, ECP has potentially beneficial effects upon biomarkers of recovery, without affecting the neuromuscular function.


Subject(s)
Counterpulsation , Exercise/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Myalgia/physiopathology , Sports/physiology , Biomarkers/analysis , Creatine Kinase/blood , Humans , Hydrocortisone/blood , Immunoglobulin A/analysis , Male , Saliva/chemistry , Testosterone/blood , Torque , Young Adult , alpha-Amylases/analysis
14.
Nutrients ; 11(3)2019 Mar 24.
Article in English | MEDLINE | ID: mdl-30909645

ABSTRACT

Minerals and trace elements (MTEs) are micronutrients involved in hundreds of biological processes. Deficiency in MTEs can negatively affect athletic performance. Approximately 50% of athletes have reported consuming some form of micronutrient supplement; however, there is limited data confirming their efficacy for improving performance. The aim of this study was to systematically review the role of MTEs in exercise and athletic performance. Six electronic databases and grey literature sources (MEDLINE; EMBASE; CINAHL and SportDISCUS; Web of Science and clinicaltrials.gov) were searched, in accordance with PRISMA guidelines. Results: 17,433 articles were identified and 130 experiments from 128 studies were included. Retrieved articles included Iron (n = 29), Calcium (n = 11), Magnesium, (n = 22), Phosphate (n = 17), Zinc (n = 9), Sodium (n = 15), Boron (n = 4), Selenium (n = 5), Chromium (n = 12) and multi-mineral articles (n = 5). No relevant articles were identified for Copper, Manganese, Iodine, Nickel, Fluoride or Cobalt. Only Iron and Magnesium included articles of sufficient quality to be assigned as 'strong'. Currently, there is little evidence to support the use of MTE supplementation to improve physiological markers of athletic performance, with the possible exception of Iron (in particular, biological situations) and Magnesium as these currently have the strongest quality evidence. Regardless, some MTEs may possess the potential to improve athletic performance, but more high quality research is required before support for these MTEs can be given. PROSPERO preregistered (CRD42018090502).


Subject(s)
Athletic Performance/physiology , Dietary Supplements , Exercise/physiology , Minerals/administration & dosage , Trace Elements/administration & dosage , Adolescent , Adult , Aged , Female , Humans , Male , Micronutrients/administration & dosage , Middle Aged , Young Adult
15.
J Nutr ; 149(1): 88-97, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30608606

ABSTRACT

Background: Dietary modifications can contribute to improved pancreatic ß cell function and enhance glycemic control. Objectives: The objectives of this study were as follows: 1) to investigate the potential of milk protein hydrolysates to modulate postprandial glucose response; 2) to assess individual responses; and 3) to explore the inter- and intraindividual reproducibility of the response. Methods: A 14-d randomized crossover study investigated interstitial glucose levels of participants in response to 12% w/v milk protein drinks (intact caseinate and casein hydrolysate A and B) consumed in random order with a 2-d washout between treatments. Milk protein drinks were consumed immediately prior to study breakfast and evening meals. Twenty participants (11 men, 9 women) aged 50 ± 8 y with a body mass index (in kg/m2) of 30.2 ± 3.1 were recruited. Primary outcome was glucose levels assessed at 15-min intervals with the use of glucose monitors. Results: Repeated-measures ANOVA revealed that for breakfast there was a significant difference across the 3 treatment groups (P = 0.037). The ability to reduce postprandial glucose was specific to casein hydrolysate B in comparison with intact caseinate (P = 0.039). However, despite this significant difference, further examination revealed that only 3 out of 18 individuals were classified as responders (P < 0.05). High intraclass correlation coefficients were obtained for glucose response to study meals (intraclass correlation coefficient: 0.892 for breakfast with intact caseinate). The interindividual CVs were higher than the intraindividual CVs. Mean inter- and intraindividual CVs were 19.4% and 5.7%, respectively, for breakfast with intact caseinate. Conclusion: Ingestion of a specific casein hydrolysate successfully reduced the postprandial glucose response; however, at an individual level only 3 participants were classified as responders, highlighting the need for precision nutrition. Exploration of high interindividual responses to nutrition interventions is needed, in combination with the development of precision nutrition, potentially through an n-of-1 approach. This clinical trial was registered as ISRCTN61079365 (https://www.isrctn.com/).


Subject(s)
Blood Glucose/drug effects , Milk Proteins/pharmacology , Nutrition Therapy , Overweight , Precision Medicine , Adult , Cross-Over Studies , Female , Humans , Male , Middle Aged , Milk Proteins/administration & dosage
16.
Nutrients ; 11(1)2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30642050

ABSTRACT

Taste is influenced by several factors. However, whether habitual exercise level is associated with differences in taste perception has received little investigation. The aim of this study was to determine if habitual exercise is associated with differences in taste perception in men. Active (n = 16) and inactive (n = 14) males, between ages 18⁻55, underwent two days of sensory testing, using prototypical taste stimuli of high and low concentrations for sweet, salt, bitter, sour, umami, and carbohydrate (maltodextrin). Mean perceived intensity and hedonic ratings were recorded. Eating behaviour was assessed by the three factor eating questionnaire and food intake by EPIC food frequency questionnaire (FFQ). There were moderate to large differences between the two groups in perceived intensity for sweet taste at the high concentration and umami taste at both high and low concentrations, with active males recording a higher perceived intensity (p < 0.05 for all). The active group also recorded a greater dislike for umami low and carbohydrate low concentration (p < 0.01). Salt, bitter and sour perception did not significantly differ between the two groups. FFQ analysis showed no difference in % energy from macronutrients between the groups. Eating behaviour traits correlated with sweet taste intensity and umami taste liking, independent of activity status. Results indicated that sweet and umami taste perception differ in active compared to inactive males. Habitual exercise level should be considered in taste perception research and in product development. Whether differences in taste perception could be one factor influencing food intake and thus energy balance with habitual exercise warrants further investigation.


Subject(s)
Exercise , Taste Perception , Taste , Adolescent , Adult , Body Composition , Body Mass Index , Cross-Sectional Studies , Dietary Carbohydrates/administration & dosage , Dietary Fats/administration & dosage , Dietary Proteins/administration & dosage , Food Preferences , Humans , Male , Middle Aged , Sample Size , Surveys and Questionnaires , Young Adult
17.
Eur J Nutr ; 58(3): 955-964, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29322315

ABSTRACT

PURPOSE: Milk proteins and/or their hydrolysates have been reported to have beneficial effects for improving postprandial glycaemia. Gastric emptying is a major determinant of postprandial glycaemia, yet limited studies have examined the effects of intact milk proteins compared to hydrolysates on gastric emptying. We investigated gastric emptying of a casein hydrolysate compared to intact casein. METHODS: Nine overweight and obese adults (mean ± SD age: 59.5 ± 6.5 years and BMI 28.4 ± 2.6 kg/m2) were studied in a randomised crossover design. Gastric emptying was assessed by paracetamol absorption test, with HPLC-MS being used for determining paracetamol and its primary metabolites in plasma. Glucose, insulin and amino acid responses were also assessed. RESULTS: Linear mixed model analysis showed no effect of treatment [F(1, 55) = 2.1, P = 0.16] or treatment × time interactions [F(6, 54) = 1.5, P = 0.21] for paracetamol concentrations. In addition, there were no significant differences between the intact casein and hydrolysate for any of the gastric emptying outcome measures (Cmax, AUC0-30min, AUC0-60min; AUC0-240min). However, insulin was increased in the early postprandial period (iAUC0-15min, iAUC0-30min;P < 0.05) and there was a treatment effect for glucose [F(1, 53) = 5.3, P = 0.03] following the casein hydrolysate compared to intact casein. No significant differences in amino acids were found between the two conditions. CONCLUSIONS: Gastric emptying of a casein hydrolysate compared to intact casein does not differ. Mechanisms other than gastric emptying, for example the presence of a bioactive peptide sequence, may contribute to the glycaemic management effects of certain milk protein hydrolysates and warrant further investigation.


Subject(s)
Amino Acids/drug effects , Amino Acids/metabolism , Caseins/pharmacology , Gastric Emptying/drug effects , Acetaminophen/metabolism , Adult , Aged , Cross-Over Studies , Female , Glucose/metabolism , Humans , Insulin/blood , Male , Middle Aged , Postprandial Period
18.
Appetite ; 108: 57-67, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27663531

ABSTRACT

This research investigated the effect of modifying the aftertaste of potato crisps on (1) temporal sensory perception and (2) appetite using three mouthwash conditions (no mouthwash, a water mouthwash, and a menthol mouthwash). For the sensory study, 17 screened female subjects were trained on the Temporal Dominance of Sensations (TDS) methodology. Subjects undertook TDS to monitor all sensory attributes during the mastication of a 2 g crisp until swallowing (at 20s), then conducted the mouthwash, and then continued the TDS task to monitor aftertaste until 90s. For the appetite study, 36 subjects (18 male, 18 female) completed 100 mm Visual Analogue Scales (VAS) for desire, liking, hunger, and thirst, followed by an ad libitum eating task. For the VAS scales testing, subjects chewed and swallowed a 2 g crisp, and then immediately conducted the mouthwash before completing the VAS scales. For the ad libitum task, subjects were given 12 min to consume as many crisps as they desired on a plate (up to 50 g). Every three minutes they were required to conduct a mouthwash. TDS results showed that in comparison with no mouthwash, the water mouthwash significantly reduced aftertaste attributes such as savoury, salty, and fatty mouthcoating, and the menthol mouthwash significantly increased aftertaste attributes of cooling, minty, and tingly. The water mouthwash did not influence desire and liking of crisps, or hunger and thirst. The water mouthwash did not influence ad libitum intake of the crisps over a 12 min period. The menthol mouthwash significantly reduced desire and liking of the crisps, as well as hunger and thirst. Furthermore, the menthol mouthwash significantly reduced ad libitum crisp intake by 29% over the 12 min period.


Subject(s)
Energy Intake , Fast Foods/adverse effects , Food Preferences , Menthol/administration & dosage , Mouthwashes/administration & dosage , Plant Roots/chemistry , Solanum tuberosum/chemistry , Adolescent , Adult , Appetite Depressants/administration & dosage , Appetite Regulation , Female , Humans , Hunger , Male , Sensation , Taste , Taste Perception , Thirst , Young Adult
19.
Physiol Behav ; 160: 43-9, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27072508

ABSTRACT

Habitual exercise could contribute to weight management by altering processes of food reward via the gut-brain axis. We investigated hedonic processes of food reward in active and inactive men and characterised relationships with gastric emptying and body fat. Forty-four men (active: n=22; inactive: n=22, BMI range 21-36kg/m(2); percent fat mass range 9-42%) were studied. Participants were provided with a standardised fixed breakfast and an ad libitum lunch meal 5h later. Explicit liking, implicit wanting and preference among high-fat, low-fat, sweet and savoury food items were assessed immediately post-breakfast (fed state) and again pre-lunch (hungry state) using the Leeds Food Preference Questionnaire. Gastric emptying was assessed by (13)C-octanoic acid breath test. Active individuals exhibited a lower liking for foods overall and a greater implicit wanting for low-fat savoury foods in the fed state, compared to inactive men. Differences in the fed state remained significant after adjusting for percent fat mass. Active men also had a greater increase in liking for savoury foods in the interval between breakfast and lunch. Faster gastric emptying was associated with liking for savoury foods and with an increase in liking for savoury foods in the postprandial interval. In contrast, greater implicit wanting for high-fat foods was associated with slower gastric emptying. These associations were independent of each other, activity status and body fat. In conclusion, active and inactive men differ in processes of food reward. The rate of gastric emptying may play a role in the association between physical activity status and food reward, via the gut-brain axis.


Subject(s)
Adipose Tissue/physiology , Appetite/physiology , Gastric Emptying/physiology , Reward , Adolescent , Adult , Analysis of Variance , Feeding Behavior , Food Preferences/physiology , Humans , Male , Middle Aged , Photic Stimulation , Young Adult
20.
Nutr Res Rev ; 29(1): 91-101, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27109024

ABSTRACT

Milk protein-derived peptides have been reported to have potential benefits for reducing the risk of type 2 diabetes. However, what the active components are and whether intact peptides exert this bioactivity has received little investigation in human subjects. Furthermore, potentially useful bioactive peptides can be limited by low bioavailability. Various peptides have been identified in the gastrointestinal tract and bloodstream after milk-protein ingestion, providing valuable insights into their potential bioavailability. However, these studies are currently limited and the structure and sequence of milk peptides exerting bioactivity for glycaemic management has received little investigation in human subjects. The present article reviews the bioavailability of milk protein-derived peptides in human studies to date, and examines the evidence on milk proteins and glycaemic management, including potential mechanisms of action. Areas in need of advancement are identified. Only by establishing the bioavailability of milk protein-derived peptides, the active components and the mechanistic pathways involved can the benefits of milk proteins for the prevention or management of type 2 diabetes be fully realised in future.


Subject(s)
Diabetes Mellitus, Type 2/prevention & control , Milk Proteins , Peptides , Biological Availability , Dipeptidyl Peptidase 4 , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide 1 , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...