Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 912, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060266

ABSTRACT

Progressive ventricular enlargement, a key feature of several neurologic and psychiatric diseases, is mediated by unknown mechanisms. Here, using murine models of 22q11-deletion syndrome (22q11DS), which is associated with schizophrenia in humans, we found progressive enlargement of lateral and third ventricles and deceleration of ciliary beating on ependymal cells lining the ventricular walls. The cilia-beating deficit observed in brain slices and in vivo is caused by elevated levels of dopamine receptors (Drd1), which are expressed in motile cilia. Haploinsufficiency of the microRNA-processing gene Dgcr8 results in Drd1 elevation, which is brought about by a reduction in Drd1-targeting microRNAs miR-382-3p and miR-674-3p. Replenishing either microRNA in 22q11DS mice normalizes ciliary beating and ventricular size. Knocking down the microRNAs or deleting their seed sites on Drd1 mimicked the cilia-beating and ventricular deficits. These results suggest that the Dgcr8-miR-382-3p/miR-674-3p-Drd1 mechanism contributes to deceleration of ciliary motility and age-dependent ventricular enlargement in 22q11DS.


Subject(s)
Cerebral Ventricles/metabolism , Cilia/physiology , MicroRNAs/genetics , Schizophrenia/genetics , Animals , Chromosome Deletion , Cilia/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Schizophrenia/metabolism , Schizophrenia/physiopathology
2.
Dis Model Mech ; 11(5)2018 05 10.
Article in English | MEDLINE | ID: mdl-29666155

ABSTRACT

Mutations in SIL1, a cofactor for the endoplasmic reticulum (ER)-localized Hsp70 chaperone, BiP, cause Marinesco-Sjögren syndrome (MSS), an autosomal recessive disorder. Using a mouse model, we characterized molecular aspects of the progressive myopathy associated with MSS. Proteomic profiling of quadriceps at the onset of myopathy revealed that SIL1 deficiency affected multiple pathways critical to muscle physiology. We observed an increase in ER chaperones prior to the onset of muscle weakness, which was complemented by upregulation of multiple components of cellular protein degradation pathways. These responses were inadequate to maintain normal expression of secretory pathway proteins, including insulin and IGF-1 receptors. There was a paradoxical enhancement of downstream PI3K-AKT-mTOR signaling and glucose uptake in SIL1-disrupted skeletal muscles, all of which were insufficient to maintain skeletal muscle mass. Together, these data reveal a disruption in ER homeostasis upon SIL1 loss, which is countered by multiple compensatory responses that are ultimately unsuccessful, leading to trans-organellar proteostasis collapse and myopathy.


Subject(s)
Endoplasmic Reticulum/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Heat-Shock Proteins/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Proteostasis , Aging/pathology , Animals , Disease Progression , Endoplasmic Reticulum Chaperone BiP , Insulin/metabolism , Male , Mice , Models, Biological , Muscle Strength , Muscle, Skeletal/pathology , Muscle, Skeletal/ultrastructure , Muscular Diseases/metabolism , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Proteome/metabolism , Receptor, Insulin/metabolism , Signal Transduction
3.
Autophagy ; 14(5): 796-811, 2018.
Article in English | MEDLINE | ID: mdl-29099309

ABSTRACT

Mammalian ULK1 (unc-51 like kinase 1) and ULK2, Caenorhabditis elegans UNC-51, and Drosophila melanogaster Atg1 are serine/threonine kinases that regulate flux through the autophagy pathway in response to various types of cellular stress. C. elegans UNC-51 and D. melanogaster Atg1 also promote axonal growth and defasciculation; disruption of these genes results in defective axon guidance in invertebrates. Although disrupting ULK1/2 function impairs normal neurite outgrowth in vitro, the role of ULK1 and ULK2 in the developing brain remains poorly characterized. Here, we show that ULK1 and ULK2 are required for proper projection of axons in the forebrain. Mice lacking Ulk1 and Ulk2 in their central nervous systems showed defects in axonal pathfinding and defasciculation affecting the corpus callosum, anterior commissure, corticothalamic axons and thalamocortical axons. These defects impaired the midline crossing of callosal axons and caused hypoplasia of the anterior commissure and disorganization of the somatosensory cortex. The axon guidance defects observed in ulk1/2 double-knockout mice and central nervous system-specific (Nes-Cre) Ulk1/2-conditional double-knockout mice were not recapitulated in mice lacking other autophagy genes (i.e., Atg7 or Rb1cc1 [RB1-inducible coiled-coil 1]). The brains of Ulk1/2-deficient mice did not show stem cell defects previously attributed to defective autophagy in ambra1 (autophagy/Beclin 1 regulator 1)- and Rb1cc1-deficient mice or accumulation of SQSTM1 (sequestosome 1)+ or ubiquitin+ deposits. Together, these data demonstrate that ULK1 and ULK2 regulate axon guidance during mammalian brain development via a noncanonical (i.e., autophagy-independent) pathway.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy , Axon Guidance , Prosencephalon/embryology , Prosencephalon/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Animals, Newborn , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein-1 Homolog/deficiency , Autophagy-Related Proteins , Axons/metabolism , Axons/ultrastructure , Hippocampus/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Stem Cells/metabolism , Protein Serine-Threonine Kinases/deficiency , Somatosensory Cortex/metabolism , Ubiquitinated Proteins/metabolism
4.
Mol Genet Metab ; 120(4): 350-362, 2017 04.
Article in English | MEDLINE | ID: mdl-28189602

ABSTRACT

Coenzyme A (CoA) is a cofactor that is central to energy metabolism and CoA synthesis is controlled by the enzyme pantothenate kinase (PanK). A transgenic mouse strain expressing human PANK2 was derived to determine the physiological impact of PANK overexpression and elevated CoA levels. The Tg(PANK2) mice expressed high levels of the transgene in skeletal muscle and heart; however, CoA was substantially elevated only in skeletal muscle, possibly associated with the comparatively low endogenous levels of acetyl-CoA, a potent feedback inhibitor of PANK2. Tg(PANK2) mice were smaller, had less skeletal muscle mass and displayed significantly impaired exercise tolerance and grip strength. Skeletal myofibers were characterized by centralized nuclei and aberrant mitochondria. Both the content of fully assembled complex I of the electron transport chain and ATP levels were reduced, while markers of oxidative stress were elevated in Tg(PANK2) skeletal muscle. These abnormalities were not detected in the Tg(PANK2) heart muscle, with the exception of spotty loss of cristae organization in the mitochondria. The data demonstrate that excessively high CoA may be detrimental to skeletal muscle function.


Subject(s)
Coenzyme A/metabolism , Hand Strength/physiology , Mitochondria/metabolism , Muscle, Skeletal/physiology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Animals , Electron Transport Complex I/metabolism , Humans , Mice , Mice, Transgenic , Muscle, Skeletal/metabolism , Myocardium/metabolism , Oxidative Stress , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Up-Regulation
5.
Nat Commun ; 7: 11876, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27336173

ABSTRACT

Maintenance of epithelial cell polarity and epithelial barrier relies on the spatial organization of the actin cytoskeleton and proper positioning/assembly of intercellular junctions. However, how these processes are regulated is poorly understood. Here we reveal a key role for the multifunctional protein Alix in both processes. In a knockout mouse model of Alix, we identified overt structural changes in the epithelium of the choroid plexus and in the ependyma, such as asymmetrical cell shape and size, misplacement and abnormal beating of cilia, blebbing of the microvilli. These defects culminate in excessive cell extrusion, enlargement of the lateral ventricles and hydrocephalus. Mechanistically, we find that by interacting with F-actin, the Par complex and ZO-1, Alix ensures the formation and maintenance of the apically restricted actomyosin-tight junction complex. We propose that in this capacity Alix plays a role in the establishment of apical-basal polarity and in the maintenance of the epithelial barrier.


Subject(s)
Actomyosin/metabolism , Blood-Brain Barrier , Calcium-Binding Proteins/physiology , Choroid Plexus/metabolism , Tight Junctions/metabolism , Actins/metabolism , Animals , Cell Polarity , Choroid Plexus/ultrastructure , Ependyma/ultrastructure , Epithelial Cells/ultrastructure , Hydrocephalus/etiology , Mice , Mice, Knockout , Zonula Occludens-1 Protein/metabolism
6.
PLoS Genet ; 11(9): e1005500, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26352669

ABSTRACT

Nature's fastest motors are the cochlear outer hair cells (OHCs). These sensory cells use a membrane protein, Slc26a5 (prestin), to generate mechanical force at high frequencies, which is essential for explaining the exquisite hearing sensitivity of mammalian ears. Previous studies suggest that Slc26a5 continuously diffuses within the membrane, but how can a freely moving motor protein effectively convey forces critical for hearing? To provide direct evidence in OHCs for freely moving Slc26a5 molecules, we created a knockin mouse where Slc26a5 is fused with YFP. These mice and four other strains expressing fluorescently labeled membrane proteins were used to examine their lateral diffusion in the OHC lateral wall. All five proteins showed minimal diffusion, but did move after pharmacological disruption of membrane-associated structures with a cholesterol-depleting agent and salicylate. Thus, our results demonstrate that OHC lateral wall structure constrains the mobility of plasma membrane proteins and that the integrity of such membrane-associated structures are critical for Slc26a5's active and structural roles. The structural constraint of membrane proteins may exemplify convergent evolution of cellular motors across species. Our findings also suggest a possible mechanism for disorders of cholesterol metabolism with hearing loss such as Niemann-Pick Type C diseases.


Subject(s)
Hair Cells, Auditory, Outer/metabolism , Molecular Motor Proteins/metabolism , Animals , Bacterial Proteins/genetics , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Rhodopsin/metabolism , Salicylic Acid/pharmacology , beta-Cyclodextrins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...