Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 552(7684): 230-234, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29211724

ABSTRACT

Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of -66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a 'top-down' regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010-2013. We find close agreement between our 'top-down' and combined 'bottom-up' estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources.


Subject(s)
Methane/analysis , Methane/metabolism , Rainforest , Trees/chemistry , Trees/metabolism , Wetlands , Atmosphere/chemistry , Brazil , Rivers , Wood/chemistry
3.
Glob Chang Biol ; 21(7): 2642-2654, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25665153

ABSTRACT

Wetland-adapted trees are known to transport soil-produced methane (CH4 ), an important greenhouse gas to the atmosphere, yet seasonal variations and controls on the magnitude of tree-mediated CH4 emissions remain unknown for mature forests. We examined the spatial and temporal variability in stem CH4 emissions in situ and their controls in two wetland-adapted tree species (Alnus glutinosa and Betula pubescens) located in a temperate forested wetland. Soil and herbaceous plant-mediated CH4 emissions from hollows and hummocks also were measured, thus enabling an estimate of contributions from each pathway to total ecosystem flux. Stem CH4 emissions varied significantly between the two tree species, with Alnus glutinosa displaying minimal seasonal variations, while substantial seasonal variations were observed in Betula pubescens. Trees from each species emitted similar quantities of CH4 from their stems regardless of whether they were situated in hollows or hummocks. Soil temperature and pore-water CH4 concentrations best explained annual variability in stem emissions, while wood-specific density and pore-water CH4 concentrations best accounted for between-species variations in stem CH4 emission. Our study demonstrates that tree-mediated CH4 emissions contribute up to 27% of seasonal ecosystem CH4 flux in temperate forested wetland, with the largest relative contributions occurring in spring and winter. Tree-mediated CH4 emissions currently are not included in trace gas budgets of forested wetland. Further work is required to quantify and integrate this transport pathway into CH4 inventories and process-based models.

4.
New Phytol ; 201(3): 887-896, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24219654

ABSTRACT

Recent studies have confirmed significant tree-mediated methane emissions in wetlands; however, conditions and processes controlling such emissions are unclear. Here we identify factors that control the emission of methane from Alnus glutinosa. Methane fluxes from the soil surface, tree stem surfaces, leaf surfaces and whole mesocosms, pore water methane concentrations and physiological factors (assimilation rate, stomatal conductance and transpiration) were measured from 4-yr old A. glutinosa trees grown under two artificially controlled water-table positions. Up to 64% of methane emitted from the high water-table mesocosms was transported to the atmosphere through A. glutinosa. Stem emissions from 2 to 22 cm above the soil surface accounted for up to 42% of total tree-mediated methane emissions. Methane emissions were not detected from leaves and no relationship existed between leaf surface area and rates of tree-mediated methane emissions. Tree stem methane flux strength was controlled by the amount of methane dissolved in pore water and the density of stem lenticels. Our data show that stem surfaces dominate methane egress from A. glutinosa, suggesting that leaf area index is not a suitable approach for scaling tree-mediated methane emissions from all types of forested wetland.


Subject(s)
Alnus/chemistry , Methane/analysis , Trees/chemistry , Groundwater , Plant Stems/chemistry , Volatilization , Wetlands
5.
New Phytol ; 197(2): 524-531, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23253335

ABSTRACT

Wetlands are the largest source of methane to the atmosphere, with tropical wetlands comprising the most significant global wetland source component. The stems of some wetland-adapted tree species are known to facilitate egress of methane from anoxic soil, but current ground-based flux chamber methods for determining methane inventories in forested wetlands neglect this emission pathway, and consequently, the contribution of tree-mediated emissions to total ecosystem methane flux remains unknown. In this study, we quantify in situ methane emissions from tree stems, peatland surfaces (ponded hollows and hummocks) and root-aerating pneumatophores in a tropical forested peatland in Southeast Asia. We show that tree stems emit substantially more methane than peat surfaces, accounting for 62-87% of total ecosystem methane flux. Tree stem flux strength was controlled by the stem diameter, wood specific density and the amount of methane dissolved in pore water. Our findings highlight the need to integrate this emission pathway in both field studies and models if wetland methane fluxes are to be characterized accurately in global methane budgets, and the discrepancies that exist between field-based flux inventories and top-down estimates of methane emissions from tropical areas are to be reconciled.


Subject(s)
Methane/analysis , Trees/metabolism , Tropical Climate , Wetlands , Indonesia , Plant Stems/anatomy & histology , Plant Stems/metabolism , Regression Analysis , Soil , Trees/anatomy & histology , Wood/metabolism
6.
Archaea ; 2012: 896727, 2012.
Article in English | MEDLINE | ID: mdl-23226972

ABSTRACT

Oxic soils typically are a sink for methane due to the presence of high-affinity methanotrophic Bacteria capable of oxidising methane. However, soils experiencing water saturation are able to host significant methanogenic archaeal communities, potentially affecting the capacity of the soil to act as a methane sink. In order to provide insight into methanogenic populations in such soils, the distribution of archaeol in free and conjugated forms was investigated as an indicator of fossilised and living methanogenic biomass using gas chromatography-mass spectrometry with selected ion monitoring. Of three soils studied, only one organic matter-rich site contained archaeol in quantifiable amounts. Assessment of the subsurface profile revealed a dominance of archaeol bound by glycosidic headgroups over phospholipids implying derivation from fossilised biomass. Moisture content, through control of organic carbon and anoxia, seemed to govern trends in methanogen biomass. Archaeol and crenarchaeol profiles differed, implying the former was not of thaumarcheotal origin. Based on these results, we propose the use of intact archaeol as a useful biomarker for methanogen biomass in soil and to track changes in moisture status and aeration related to climate change.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Glyceryl Ethers/analysis , Methane/metabolism , Soil Microbiology , Soil/chemistry , Archaea/growth & development , Bacteria/growth & development , Gas Chromatography-Mass Spectrometry
7.
Environ Microbiol ; 7(7): 947-60, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15946291

ABSTRACT

The methanogen community in sediment from the edge of a small brackish lake connected to the Beaulieu Estuary (Hampshire, UK) was investigated by analysis of 16S rRNA gene diversity using new methanogen-specific primers plus Archaea-specific primers. 16S rRNA gene primers previously used for polymerase chain reaction (PCR) detection of methanogenic Archaea from a variety of environments were evaluated by in silico testing. The primers displayed variable coverage of the four main orders of methanogens, highlighting the importance of this type of primer evaluation. Three PCR primer sets were designed using novel reverse primers to facilitate specific amplification of the orders Methanomicrobiales/Methanosarcinales, Methanobacteriales and Methanococcales. Diversity of the methanogen functional gene, methyl coenzyme M reductase (mcrA), was also studied. All gene libraries constructed from this sediment indicated that Methanomicrobiales and Methanosarcinales were the only methanogens detected. There was good agreement between the relative sequence abundances in the methanogen-specific 16S rRNA gene library and terminal restriction fragment length polymorphism (T-RFLP) profiling, suggesting that the population was dominated by putative H2 CO2 utilizing Methanomicrobiales, although acetate-utilizing methanogens were also present. The methanogen population analyses were in agreement with methanogenic activity measurements, which indicated that bicarbonate methanogenesis was higher than acetate methanogenesis at all depths measured and overall there was a significant difference (P = 0.001) between the rates of the two pathways. This study demonstrates the utility of new 16S rRNA gene PCR primers targeting specific methanogenic orders, and the combined results suggest that the CO2 reduction pathway dominates methanogenesis in the brackish sediment investigated.


Subject(s)
Ecosystem , Euryarchaeota/classification , Euryarchaeota/genetics , Fresh Water/microbiology , Geologic Sediments/microbiology , Methane/metabolism , Acetates/metabolism , Bicarbonates/metabolism , DNA Primers , DNA, Archaeal/analysis , DNA, Archaeal/isolation & purification , Euryarchaeota/growth & development , Euryarchaeota/isolation & purification , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...