Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Hum Gene Ther ; 27(5): 354-62, 2016 May.
Article in English | MEDLINE | ID: mdl-27004832

ABSTRACT

Lentiviral vectors are increasingly used in clinical trials to treat genetic diseases. Our research has focused on strategies to improve lentiviral gene transfer efficiency in the airways. Previously we demonstrated that a feline immunodeficiency virus (FIV)-based lentiviral vector pseudotyped with the baculovirus envelope glycoprotein GP64 (GP64-FIV) efficiently transduced mouse nasal epithelia in vivo but transduced mouse intrapulmonary airways with 10-fold less efficiency. Here, we demonstrate that members of a family of proteins with antiviral activity, interferon-induced transmembrane proteins (IFITMs), are more highly expressed in mouse intrapulmonary airways as compared with mouse nasal airways. Using GP64- and VSV-G (vesicular stomatitis virus G glycoprotein)-pseudotyped FIV, we show that expression of mouse IFITM1, IFITM2, and IFITM3 restricts gene transfer. Further, we show that both the nasal and intrapulmonary airways of IFITM locus knockout mice are more efficiently transduced with GP64-FIV than their heterozygous littermates. In anticipation of transitioning our studies into pig models of airway disease and clinical trials in humans, we investigated the ability of pig and human IFITMs to restrict lentiviral gene transfer. We observed that both human and pig IFITMs partially restricted both VSV-G-FIV and GP64-FIV transduction in vitro. Previous studies have focused on IFITM-mediated restriction of replication-competent wild-type viruses; however, these results implicate the IFITM proteins as restriction factors that can limit lentivirus-based vector gene transfer to airway epithelia. The findings are relevant to future preclinical and clinical airway gene therapy trials using lentivirus-based vectors.


Subject(s)
Genetic Vectors , Lentivirus , Membrane Proteins/metabolism , Transduction, Genetic , Amino Acid Sequence , Animals , Cell Line , Gene Expression , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Knockout , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Respiratory Mucosa/metabolism , Swine
4.
J Virol ; 89(14): 7089-96, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25926640

ABSTRACT

UNLABELLED: The discovery that measles virus (MV) uses the adherens junction protein nectin-4 as its epithelial receptor provides a new vantage point from which to characterize its rapid spread in the airway epithelium. We show here that in well-differentiated primary cultures of airway epithelial cells from human donors (HAE), MV infectious centers form rapidly and become larger than those of other respiratory pathogens: human respiratory syncytial virus, parainfluenza virus 5, and Sendai virus. While visible syncytia do not form after MV infection of HAE, the cytoplasm of an infected cell suddenly flows into an adjacent cell, as visualized through wild-type MV-expressed cytoplasmic green fluorescent protein (GFP). High-resolution video microscopy documents that GFP flows through openings that form on the lateral surfaces between columnar epithelial cells. To assess the relevance of the protein afadin, which connects nectin-4 to the actin cytoskeleton, we knocked down its mRNA. This resulted in more-limited infectious-center formation. We also generated a nectin-4 mutant without the afadin-binding site in its cytoplasmic tail. This mutant was less effective than wild-type human nectin-4 at promoting MV infection in primary cultures of porcine airway epithelia. Thus, in airway epithelial cells, MV spread requires the nectin-4/afadin complex and is based on cytoplasm transfer between columnar cells. Since the viral membrane fusion apparatus may open the passages that allow cytoplasm transfer, we refer to them as intercellular membrane pores. Virus-induced intercellular pores may contribute to extremely efficient measles contagion by promoting the rapid spread of the virus through the upper respiratory epithelium. IMPORTANCE: Measles virus (MV), while targeted for eradication, still causes about 120,000 deaths per year worldwide. The recent reemergence of measles in insufficiently vaccinated populations in Europe and North America reminds us that measles is extremely contagious, but the processes favoring its spread in the respiratory epithelium remain poorly defined. Here we characterize wild-type MV spread in well-differentiated primary cultures of human airway epithelial cells. We observed that viral infection promotes the flow of cytoplasmic contents from infected to proximal uninfected columnar epithelial cells. Cytoplasm flows through openings that form on the lateral surfaces. Infectious-center growth is facilitated by afadin, a protein connecting the adherens junction and the actin cytoskeleton. The viral fusion apparatus may open intercellular pores, and the cytoskeleton may stabilize them. Rapid homogenization of cytoplasmic contents in epithelial infectious centers may favor rapid spread and contribute to the extremely contagious nature of measles.


Subject(s)
Cell Adhesion Molecules/metabolism , Epithelial Cells/virology , Host-Pathogen Interactions , Measles virus/growth & development , Microfilament Proteins/metabolism , Animals , Cells, Cultured , Humans , Microscopy, Video , Parainfluenza Virus 5/growth & development , Respiratory Syncytial Virus, Human/growth & development , Sendai virus/growth & development , Swine , Virus Internalization
5.
PLoS One ; 8(12): e83624, 2013.
Article in English | MEDLINE | ID: mdl-24349537

ABSTRACT

To develop stem/progenitor cell-based therapy for cystic fibrosis (CF) lung disease, it is first necessary to identify markers of human lung epithelial progenitor/stem cells and to better understand the potential for differentiation into distinct lineages. Here we investigated integrin α6ß4 as an epithelial progenitor cell marker in the human distal lung. We identified a subpopulation of α6ß4(+) cells that localized in distal small airways and alveolar walls and were devoid of pro-surfactant protein C expression. The α6ß4(+) epithelial cells demonstrated key properties of stem cells ex vivo as compared to α6ß4(-) epithelial cells, including higher colony forming efficiency, expression of stem cell-specific transcription factor Nanog, and the potential to differentiate into multiple distinct lineages including basal and Clara cells. Co-culture of α6ß4(+) epithelial cells with endothelial cells enhanced proliferation. We identified a subset of adeno-associated virus (AAVs) serotypes, AAV2 and AAV8, capable of transducing α6ß4(+) cells. In addition, reconstitution of bronchi epithelial cells from CF patients with only 5% normal α6ß4(+) epithelial cells significantly rescued defects in Cl(-) transport. Therefore, targeting the α6ß4(+) epithelial population via either gene delivery or progenitor cell-based reconstitution represents a potential new strategy to treat CF lung disease.


Subject(s)
Cystic Fibrosis/metabolism , Epithelial Cells/metabolism , Integrin alpha6beta4/metabolism , Lung/metabolism , Respiratory Mucosa/metabolism , Stem Cells/metabolism , Cells, Cultured , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Cystic Fibrosis/therapy , Dependovirus , Epithelial Cells/pathology , Female , Genetic Therapy , Humans , Integrin alpha6beta4/genetics , Lung/pathology , Male , Respiratory Mucosa/pathology , Stem Cells/pathology , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL