Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Chem Biol ; 18(12): 1388-1398, 2022 12.
Article in English | MEDLINE | ID: mdl-36097295

ABSTRACT

The Janus tyrosine kinase (JAK) family of non-receptor tyrosine kinases includes four isoforms (JAK1, JAK2, JAK3, and TYK2) and is responsible for signal transduction downstream of diverse cytokine receptors. JAK inhibitors have emerged as important therapies for immun(onc)ological disorders, but their use is limited by undesirable side effects presumed to arise from poor isoform selectivity, a common challenge for inhibitors targeting the ATP-binding pocket of kinases. Here we describe the chemical proteomic discovery of a druggable allosteric cysteine present in the non-catalytic pseudokinase domain of JAK1 (C817) and TYK2 (C838), but absent from JAK2 or JAK3. Electrophilic compounds selectively engaging this site block JAK1-dependent trans-phosphorylation and cytokine signaling, while appearing to act largely as 'silent' ligands for TYK2. Importantly, the allosteric JAK1 inhibitors do not impair JAK2-dependent cytokine signaling and are inactive in cells expressing a C817A JAK1 mutant. Our findings thus reveal an allosteric approach for inhibiting JAK1 with unprecedented isoform selectivity.


Subject(s)
Cysteine , Proteomics , Signal Transduction , Cytokines , Protein Isoforms
3.
Bioorg Med Chem Lett ; 28(16): 2682-2687, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29731364

ABSTRACT

Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation of nicotinamide using S-adenosyl-L-methionine (SAM) as a methyl donor and, through doing so, can modulate cellular methylation potential to impact diverse epigenetic processes. NNMT has been implicated in a range of diseases, including cancer and metabolic disorders. Potent, selective, and cell-active inhibitors would constitute valuable probes to study the biological functions and therapeutic potential of NNMT. We previously reported the discovery of electrophilic small molecules that inhibit NNMT by reacting with an active-site cysteine residue in the SAM-binding pocket. Here, we have used activity-based protein profiling (ABPP)-guided medicinal chemistry to optimize the potency and selectivity of NNMT inhibitors, culminating in the discovery of multiple alpha-chloroacetamide (αCA) compounds with sub-µM IC50 values in vitro and excellent proteomic selectivity in cell lysates. However, these compounds showed much weaker inhibition of NNMT in cells, a feature that was not shared by off-targets of the αCAs. Our results show the potential for developing potent and selective covalent inhibitors of NNMT, but also highlight challenges that may be faced in targeting this enzyme in cellular systems.


Subject(s)
Acetamides/pharmacology , Enzyme Inhibitors/pharmacology , Nicotinamide N-Methyltransferase/antagonists & inhibitors , Acetamides/chemical synthesis , Catalytic Domain , Cell Line, Tumor , Cysteine/chemistry , Enzyme Inhibitors/chemical synthesis , Humans , Nicotinamide N-Methyltransferase/chemistry
4.
Cell ; 171(3): 696-709.e23, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28965760

ABSTRACT

The transcription factor NRF2 is a master regulator of the cellular antioxidant response, and it is often genetically activated in non-small-cell lung cancers (NSCLCs) by, for instance, mutations in the negative regulator KEAP1. While direct pharmacological inhibition of NRF2 has proven challenging, its aberrant activation rewires biochemical networks in cancer cells that may create special vulnerabilities. Here, we use chemical proteomics to map druggable proteins that are selectively expressed in KEAP1-mutant NSCLC cells. Principal among these is NR0B1, an atypical orphan nuclear receptor that we show engages in a multimeric protein complex to regulate the transcriptional output of KEAP1-mutant NSCLC cells. We further identify small molecules that covalently target a conserved cysteine within the NR0B1 protein interaction domain, and we demonstrate that these compounds disrupt NR0B1 complexes and impair the anchorage-independent growth of KEAP1-mutant cancer cells. Our findings designate NR0B1 as a druggable transcriptional regulator that supports NRF2-dependent lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/chemistry , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Proteome/analysis , Transcriptome , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cysteine/metabolism , DAX-1 Orphan Nuclear Receptor/metabolism , Gene Regulatory Networks , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Ligands , Lung Neoplasms/metabolism
5.
Nat Chem ; 9(3): 234-243, 2017 03.
Article in English | MEDLINE | ID: mdl-28221344

ABSTRACT

Activity-based protein profiling (ABPP) serves as a chemical proteomic platform to discover and characterize functional amino acids in proteins on the basis of their enhanced reactivity towards small-molecule probes. This approach, to date, has mainly targeted nucleophilic functional groups, such as the side chains of serine and cysteine, using electrophilic probes. Here we show that 'reverse-polarity' (RP)-ABPP using clickable, nucleophilic hydrazine probes can capture and identify protein-bound electrophiles in cells. Using this approach, we demonstrate that the pyruvoyl cofactor of S-adenosyl-L-methionine decarboxylase (AMD1) is dynamically controlled by intracellular methionine concentrations. We also identify a heretofore unknown modification-an N-terminally bound glyoxylyl group-in the poorly characterized protein secernin-3. RP-ABPP thus provides a versatile method to monitor the metabolic regulation of electrophilic cofactors and discover novel types of electrophilic modifications on proteins in human cells.


Subject(s)
Adenosylmethionine Decarboxylase/chemistry , Nerve Tissue Proteins/chemistry , Proteomics , Adenosylmethionine Decarboxylase/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Cell Survival , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Hydrazines/chemistry , Methionine/chemistry , Methionine/metabolism , Molecular Structure , Nerve Tissue Proteins/metabolism
6.
J Am Chem Soc ; 138(40): 13335-13343, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27689866

ABSTRACT

Methylation is a fundamental mechanism used in Nature to modify the structure and function of biomolecules, including proteins, DNA, RNA, and metabolites. Methyl groups are predominantly installed into biomolecules by a large and diverse class of S-adenosyl methionine (SAM)-dependent methyltransferases (MTs), of which there are ∼200 known or putative members in the human proteome. Deregulated MT activity contributes to numerous diseases, including cancer, and several MT inhibitors are in clinical development. Nonetheless, a large fraction of the human MT family remains poorly characterized, underscoring the need for new technologies to characterize MTs and their inhibitors in native biological systems. Here, we describe a suite of S-adenosyl homocysteine (SAH) photoreactive probes and their application in chemical proteomic experiments to profile and enrich a large number of MTs (>50) from human cancer cell lysates with remarkable specificity over other classes of proteins. We further demonstrate that the SAH probes can enrich MT-associated proteins and be used to screen for and assess the selectivity of MT inhibitors, leading to the discovery of a covalent inhibitor of nicotinamide N-methyltransferase (NNMT), an enzyme implicated in cancer and metabolic disorders. The chemical proteomics probes and methods for their utilization reported herein should prove of value for the functional characterization of MTs, MT complexes, and MT inhibitors in mammalian biology and disease.


Subject(s)
Methyltransferases/metabolism , Proteomics , Cell Line, Tumor , Enzyme Activation , Humans , Molecular Probes/metabolism , S-Adenosylhomocysteine/metabolism , Ultraviolet Rays
7.
Nature ; 534(7608): 570-4, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27309814

ABSTRACT

Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered 'undruggable'. Fragment-based ligand discovery can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes, including those that can access regions of proteins that are difficult to target through binding affinity alone. Here we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins in human proteomes and cells. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and -10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems.


Subject(s)
Cysteine/metabolism , Drug Evaluation, Preclinical/methods , Proteome/chemistry , Proteome/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , T-Lymphocytes/metabolism , Apoptosis , Caspase 10/chemistry , Caspase 10/metabolism , Caspase 8/chemistry , Caspase 8/metabolism , Cells, Cultured , Enzyme Precursors/chemistry , Enzyme Precursors/metabolism , Humans , Ligands , Peptide Fragments/chemistry , Peptide Fragments/metabolism , T-Lymphocytes/chemistry , Transcription Factors/chemistry , Transcription Factors/metabolism
8.
J Am Chem Soc ; 135(17): 6442-5, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23586842

ABSTRACT

A concise and highly enantioselective total synthesis of the akuammiline alkaloid (-)-vincorine has been accomplished. A key element of the synthesis is a stereoselective organocatalytic Diels-Alder, iminium cyclization cascade sequence, which serves to construct the tetracyclic alkaloid core architecture in one step from simple achiral precursors. The challenging seven-membered azepanyl ring system is installed by way of a single electron-mediated cyclization event initiated from an acyl telluride precursor. The total synthesis of (-)-vincorine is achieved in nine steps and 9% overall yield from commercially available starting materials.


Subject(s)
Vinca Alkaloids/chemical synthesis , Cyclization , Indicators and Reagents , Magnetic Resonance Spectroscopy , Models, Molecular , Stereoisomerism , Vinca Alkaloids/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL