Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep Med ; 1(7): 100120, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33103129

ABSTRACT

Blood-borne factors regulate adult hippocampal neurogenesis and cognition in mammals. We report that elevating circulating unacylated-ghrelin (UAG), using both pharmacological and genetic methods, reduced hippocampal neurogenesis and plasticity in mice. Spatial memory impairments observed in ghrelin-O-acyl transferase-null (GOAT-/-) mice that lack acyl-ghrelin (AG) but have high levels of UAG were rescued by acyl-ghrelin. Acyl-ghrelin-mediated neurogenesis in vitro was dependent on non-cell-autonomous BDNF signaling that was inhibited by UAG. These findings suggest that post-translational acylation of ghrelin is important to neurogenesis and memory in mice. To determine relevance in humans, we analyzed circulating AG:UAG in Parkinson disease (PD) patients diagnosed with dementia (PDD), cognitively intact PD patients, and controls. Notably, plasma AG:UAG was only reduced in PDD. Hippocampal ghrelin-receptor expression remained unchanged; however, GOAT+ cell number was reduced in PDD. We identify UAG as a regulator of hippocampal-dependent plasticity and spatial memory and AG:UAG as a putative circulating diagnostic biomarker of dementia.


Subject(s)
Acyltransferases/genetics , Ghrelin/analogs & derivatives , Ghrelin/genetics , Hippocampus/metabolism , Membrane Proteins/genetics , Parkinson Disease/genetics , Supranuclear Palsy, Progressive/genetics , Acyltransferases/deficiency , Animals , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cognition/physiology , Disease Models, Animal , Female , Gene Expression Regulation , Ghrelin/metabolism , Hippocampus/pathology , Humans , Male , Membrane Proteins/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurogenesis/genetics , Neuronal Plasticity/genetics , Neurons/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Primary Cell Culture , Rats , Signal Transduction , Spatial Memory/physiology , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology
2.
J Neuroendocrinol ; 31(7): e12755, 2019 07.
Article in English | MEDLINE | ID: mdl-31179562

ABSTRACT

The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR-eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl-ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl-ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse-chase approach, we show that peripheral treatment of adult rats with acyl-ghrelin did not increase the number of new adult-born neurones in the granule cell layer of the OB. These data demonstrate that acyl-ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult-born cells in the OB. Overnight CR induced c-Fos expression in new adult-born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re-feeding. These effects were not present in ghrelin-/- mice, suggesting that adult-born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re-feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult-born OB cells are activated by CR in a ghrelin-dependent manner.


Subject(s)
Caloric Restriction , Ghrelin/physiology , Lateral Ventricles/physiology , Neurogenesis/physiology , Neurons/physiology , Olfactory Bulb/physiology , Receptors, Ghrelin/physiology , Animals , Ghrelin/administration & dosage , Lateral Ventricles/drug effects , Male , Mice, Knockout , Neural Stem Cells , Neurogenesis/drug effects , Neurons/drug effects , Olfactory Bulb/drug effects , Receptors, Ghrelin/genetics
3.
Psychoneuroendocrinology ; 63: 198-207, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26460782

ABSTRACT

The beneficial effects of calorie restriction (CR) have been described at both organismal and cellular levels in multiple organs. However, our understanding of the causal mediators of such hormesis is poorly understood, particularly in the context of higher brain function. Here, we show that the receptor for the orexigenic hormone acyl-ghrelin, the growth hormone secretagogue receptor (Ghsr), is enriched in the neurogenic niche of the hippocampal dentate gyrus (DG). Acute elevation of acyl-ghrelin levels by injection or by overnight CR, increased DG levels of the neurogenic transcription factor, Egr-1. Two weeks of CR increased the subsequent number of mature newborn neurons in the DG of adult wild-type but not Ghsr(-/-) mice. CR wild-type mice also showed improved remote contextual fear memory. Our findings suggest that Ghsr mediates the beneficial effects of CR on enhancing adult hippocampal neurogenesis and memory.


Subject(s)
Adult Stem Cells/physiology , Caloric Restriction , Fear/psychology , Hippocampus/cytology , Mental Recall/physiology , Neural Stem Cells/physiology , Neurogenesis/genetics , Receptors, Ghrelin/genetics , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Time Factors
4.
Psychoneuroendocrinology ; 51: 431-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25462915

ABSTRACT

An important link exists between intact metabolic processes and normal cognitive functioning; however, the underlying mechanisms remain unknown. There is accumulating evidence that the gut hormone ghrelin, an orexigenic peptide that is elevated during calorie restriction (CR) and known primarily for stimulating growth hormone release, has important extra-hypothalamic functions, such as enhancing synaptic plasticity and hippocampal neurogenesis. The present study was designed to evaluate the long-term effects of elevating acyl-ghrelin levels, albeit within the physiological range, on the number of new adult born neurons in the dentate gyrus (DG) and performance on the Spontaneous Location Recognition (SLR) task, previously shown to be DG-dependent and sensitive to manipulations of plasticity mechanisms and cell proliferation. The results revealed that peripheral treatment of rats with acyl-ghrelin enhanced both adult hippocampal neurogenesis and performance on SLR when measured 8-10 days after the end of acyl-ghrelin treatment. Our data show that systemic administration of physiological levels of acyl-ghrelin can produce long-lasting improvements in spatial memory that persist following the end of treatment. As ghrelin is potentially involved in regulating the relationship between metabolic and cognitive dysfunction in ageing and neurodegenerative disease, elucidating the underlying mechanisms holds promise for identifying novel therapeutic targets and modifiable lifestyle factors that may have beneficial effects on the brain.


Subject(s)
Ghrelin/pharmacology , Hippocampus/drug effects , Neurogenesis/drug effects , Spatial Memory/drug effects , Animals , Hippocampus/physiology , Male , Neurogenesis/physiology , Rats , Spatial Memory/physiology
SELECTION OF CITATIONS
SEARCH DETAIL