Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 114(2): 21, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38368585

ABSTRACT

Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.


Subject(s)
Arabidopsis , Lotus , Arabidopsis/genetics , Symbiosis/genetics , Genotype , Agriculture , Biological Evolution , Lotus/genetics
2.
Plant Genome ; 17(1): e20429, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243772

ABSTRACT

Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.


Subject(s)
Lotus , RNA, Circular , RNA, Circular/genetics , RNA, Circular/metabolism , Lotus/genetics , Lotus/metabolism , RNA , RNA Splicing , Gene Expression Regulation
3.
bioRxiv ; 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36945518

ABSTRACT

Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore why an apparently beneficial trait would be repeatedly lost, we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state which partially mimics AMF exposure in non-inoculated plants. Our results indicate that despite the long interval since loss of AM and IPD3 in Arabidopsis, molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.

4.
BMC Genomics ; 23(1): 685, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36195834

ABSTRACT

BACKGROUND: Genetic engineering of crop plants has been successful in transferring traits into elite lines beyond what can be achieved with breeding techniques. Introduction of transgenes originating from other species has conferred resistance to biotic and abiotic stresses, increased efficiency, and modified developmental programs. The next challenge is now to combine multiple transgenes into elite varieties via gene stacking to combine traits. Generating stable homozygous lines with multiple transgenes requires selection of segregating generations which is time consuming and labor intensive, especially if the crop is polyploid. Insertion site effects and transgene copy number are important metrics for commercialization and trait efficiency. RESULTS: We have developed a simple method to identify the sites of transgene insertions using T-DNA-specific primers and high-throughput sequencing that enables identification of multiple insertion sites in the T1 generation of any crop transformed via Agrobacterium. We present an example using the allohexaploid oil-seed plant Camelina sativa to determine insertion site location of two transgenes. CONCLUSION: This new methodology enables the early selection of desirable transgene location and copy number to generate homozygous lines within two generations.


Subject(s)
Plant Breeding , DNA, Bacterial/genetics , Plants, Genetically Modified/genetics , Transgenes
5.
Front Bioeng Biotechnol ; 10: 886765, 2022.
Article in English | MEDLINE | ID: mdl-35586550

ABSTRACT

Regulation of next-generation crops in the United States under the newly implemented "SECURE" rule promises to diversify innovation in agricultural biotechnology. Specifically, SECURE promises to expand the number of products eligible for regulatory exemption, which proponents theorize will increase the variety of traits, genes, organisms, and developers involved in developing crop biotechnology. However, few data-driven studies have looked back at the history of crop biotechnology to understand how specific regulatory pathways have affected diversity in crop biotechnology and how those patterns might change over time. In this article, we draw upon 30 years of regulatory submission data to 1) understand historical diversification trends across the landscape and history of past crop biotechnology regulatory pathways and 2) forecast how the new SECURE regulations might affect future diversification trends. Our goal is to apply an empirical approach to exploring the relationship between regulation and diversity in crop biotechnology and provide a basis for future data-driven analysis of regulatory outcomes. Based on our analysis, we suggest that diversity in crop biotechnology does not follow a single trajectory dictated by the shifts in regulation, and outcomes of SECURE might be more varied and restrictive despite the revamped exemption categories. In addition, the concept of confidential business information and its relationship to past and future biotechnology regulation is reviewed in light of our analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...