Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 600(7890): 713-719, 2021 12.
Article in English | MEDLINE | ID: mdl-34880502

ABSTRACT

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Subject(s)
Gastrointestinal Microbiome , Smoking Cessation , Weight Gain , Animals , Cross-Sectional Studies , Dysbiosis/etiology , Dysbiosis/metabolism , Dysbiosis/pathology , Mice , Models, Animal , Smoking/metabolism , Smoking/pathology
3.
Nat Med ; 26(12): 1899-1911, 2020 12.
Article in English | MEDLINE | ID: mdl-33106666

ABSTRACT

Acute liver failure (ALF) is a fulminant complication of multiple etiologies, characterized by rapid hepatic destruction, multi-organ failure and mortality. ALF treatment is mainly limited to supportive care and liver transplantation. Here we utilize the acetaminophen (APAP) and thioacetamide (TAA) ALF models in characterizing 56,527 single-cell transcriptomes to define the mouse ALF cellular atlas. We demonstrate that unique, previously uncharacterized stellate cell, endothelial cell, Kupffer cell, monocyte and neutrophil subsets, and their intricate intercellular crosstalk, drive ALF. We unravel a common MYC-dependent transcriptional program orchestrating stellate, endothelial and Kupffer cell activation during ALF, which is regulated by the gut microbiome through Toll-like receptor (TLR) signaling. Pharmacological inhibition of MYC, upstream TLR signaling checkpoints or microbiome depletion suppress this cell-specific, MYC-dependent program, thereby attenuating ALF. In humans, we demonstrate upregulated hepatic MYC expression in ALF transplant recipients compared to healthy donors. Collectively we demonstrate that detailed cellular/genetic decoding may enable pathway-specific ALF therapeutic intervention.


Subject(s)
Liver Failure, Acute/genetics , Microbiota/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcriptome/drug effects , Acetaminophen/toxicity , Animals , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/pathology , Liver Transplantation/adverse effects , Mice , Microbiota/drug effects , Neutrophils/drug effects , Neutrophils/metabolism , Single-Cell Analysis , Thioacetamide/toxicity , Toll-Like Receptors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...