Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Struct Funct ; 48(1): 83-98, 2023.
Article in English | MEDLINE | ID: mdl-37164693

ABSTRACT

Inflammatory response induces phenotypic modulation of fibroblasts into myofibroblasts. Although transforming growth factor-ßs (TGF-ßs) evoke such transition, the details of the mechanism are still unknown. Here, we report that a LIM domain protein, cysteine-and glycine-rich protein 2 (CSRP2 [CRP2]) plays a vital role in the functional expression profile in myofibroblasts and cancer-associated fibroblasts (CAFs). Knock-down of CRP2 severely inhibits the expression of smooth muscle cell (SMC) genes, cell motility, and CAF-mediated collective invasion of epidermoid carcinoma. We elucidate the following molecular bases: CRP2 directly binds to myocardin-related transcription factors (MRTF-A/B [MRTFs]) and serum response factor (SRF) and stabilizes the MRTF/SRF/CArG-box complex to activate SMC gene expression. Furthermore, a three-dimensional structural analysis of CRP2 identifies the amino acids required for the CRP2-MRTF-A interaction. Polar amino acids in the C-terminal half (serine-152, glutamate-154, serine-155, threonine-156, threonine-157, and threonine-159 in human CRP2) are responsible for direct binding to MRTF-A. On the other hand, hydrophobic amino acids outside the consensus sequence of the LIM domain (tryptophan-139, phenylalanine-144, leucine-153, and leucine-158 in human CRP2) play a role in stabilizing the unique structure of the LIM domain.Key words: CRP2, 3D structure, myocardin-related transcription factor, myofibroblast, cancer-associated fibroblasts.


Subject(s)
Gene Expression Regulation , Myofibroblasts , Humans , Cells, Cultured , Leucine/metabolism , Myofibroblasts/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
2.
J Pestic Sci ; 46(1): 68-74, 2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33746548

ABSTRACT

Juvenile hormone (JH) agonists constitute a subclass of insect growth regulators and play important roles in insect pest management. In this work, a multi-step virtual screening program was executed to find novel JH agonists. A database of 5 million purchasable compounds was sequentially processed with three computational filters: (i) shape and chemical similarity as compared to known JH-active compounds; (ii) molecular docking simulations against a Drosophila JH receptor, methoprene-tolerant; and (iii) free energy calculation of ligand-receptor binding using a modified MM/PBSA (molecular mechanics/Poisson-Boltzmann surface area) protocol. The 11 candidates that passed the three filters were evaluated in a luciferase reporter assay, leading to the identification of a hit compound that contains a piperazine ring system (EC50=870 nM). This compound is structurally dissimilar to known JH agonists and synthetically easy to access; therefore, it is a promising starting point for further structure optimization.

3.
Bioorg Med Chem ; 27(6): 1065-1075, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30770256

ABSTRACT

The ecdysone receptor (EcR) is an insect nuclear receptor that is activated by the molting hormone, 20-hydroxyecdysone. Because synthetic EcR ligands disrupt the normal growth of insects, they are attractive candidates for new insecticides. In this study, the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) method was used to predict the binding activity of EcR ligands. Validity analyses using 40 known EcR ligands showed that the binding activity was satisfactorily predicted when the ligand conformational free energy term was introduced. Subsequently, this MM/PBSA method was applied to structure-based hierarchical virtual screening, and 12 candidate compounds were selected from a database of 3.8 million compounds. Five of these compounds were active in a cell-based competitive binding assay. The most potent compound is a simple proline derivative with low micromolar binding activity, representing a valuable lead compound for further structural optimization.


Subject(s)
Insect Proteins/antagonists & inhibitors , Insecticides/chemistry , Receptors, Steroid/antagonists & inhibitors , Animals , Databases, Pharmaceutical , Drug Design , Insect Proteins/metabolism , Insecta/drug effects , Insecta/metabolism , Insecticides/metabolism , Insecticides/toxicity , Ligands , Molecular Dynamics Simulation , Receptors, Steroid/metabolism , Thermodynamics
4.
Bioorg Med Chem ; 26(9): 2466-2474, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29685682

ABSTRACT

4-Coumaroyl-CoA ligase (4CL) is ubiquitous in the plant kingdom, and plays a central role in the biosynthesis of phenylpropanoids such as lignins, flavonoids, and coumarins. 4CL catalyzes the formation of the coenzyme A thioester of cinnamates such as 4-coumaric, caffeic, and ferulic acids, and the regulatory position of 4CL in the phenylpropanoid pathway renders the enzyme an attractive target that controls the composition of phenylpropanoids in plants. In this study, we designed and synthesized mechanism-based inhibitors for 4CL in order to develop useful tools for the investigation of physiological functions of 4CL and chemical agents that modulate plant growth with the ultimate goal to produce plant biomass that exhibits features that are beneficial to humans. The acylsulfamide backbone of the inhibitors in this study was adopted as a mimic of the acyladenylate intermediates in the catalytic reaction of 4CL. These acylsulfamide inhibitors and the important synthetic intermediates were fully characterized using two-dimensional NMR spectroscopy. Five 4CL proteins with distinct substrate specificity from four plant species, i.e., Arabidopsis thaliana, Glycine max (soybean), Populus trichocarpa (poplar), and Petunia hybrida (petunia), were used to evaluate the inhibitory activity, and the half-maximum inhibitory concentration (IC50) of each acylsulfamide in the presence of 4-coumaric acid (100 µM) was determined as an index of inhibitory activity. The synthetic acylsulfamides used in this study inhibited the 4CLs with IC50 values ranging from 0.10 to 722 µM, and the IC50 values of the most potent inhibitors for each 4CL were 0.10-2.4 µM. The structure-activity relationship observed in this study revealed that both the presence and the structure of the acyl group of the synthetic inhibitors strongly affect the inhibitory activity, and indicates that 4CL recognizes the acylsulfamide inhibitors as acyladenylate mimics.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/chemistry , Arabidopsis Proteins/antagonists & inhibitors , Coenzyme A Ligases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Sulfonamides/chemistry , Adenosine/chemical synthesis , Arabidopsis/enzymology , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Petunia/enzymology , Populus/enzymology , Glycine max/enzymology , Structure-Activity Relationship , Substrate Specificity , Sulfonamides/chemical synthesis
5.
Bioorg Med Chem ; 25(17): 4566-4578, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28751198

ABSTRACT

Brassinolide (BL) and castasterone (CS) are the representative members of brassinosteroid class of plant steroid hormone having plant growth promoting activity. In this study, eleven CS analogs bearing a variety of side chains were synthesized to determine the effect of the side chain structures on the BL-like activity. The plant hormonal activity was evaluated in a dwarf rice lamina inclination assay, and the potency was determined as the reciprocal logarithm of the 50% effective dose (ED50) from each dose-response curve. The reciprocal logarithm of ED50 (pED50) was decreased dramatically upon deletion of the C-28 methyl group of CS. The introduction of oxygen-containing groups such as hydroxy, methoxy, and ethoxycarbonyl was also unfavorable to the activity. The pED50 was influenced by the geometry of carbon-carbon double bond between C-24 and C-25 (cis and trans), but the introduction of a fluorine atom at the C-25 position of the double bond did not significantly change the activity. The binding free energy (ΔG) was calculated for all ligand-receptor binding interactions using molecular dynamics, resulting that ΔG is linearly correlated with the pED50.


Subject(s)
Cholestanols/chemistry , Plant Growth Regulators/chemistry , Binding Sites , Brassinosteroids/chemistry , Brassinosteroids/metabolism , Brassinosteroids/pharmacology , Cholestanols/metabolism , Cholestanols/pharmacology , Ligands , Molecular Docking Simulation , Oryza/drug effects , Oryza/growth & development , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Protein Structure, Tertiary , Steroids, Heterocyclic/chemistry , Steroids, Heterocyclic/metabolism , Steroids, Heterocyclic/pharmacology
6.
J Pestic Sci ; 42(3): 105-111, 2017 08 20.
Article in English | MEDLINE | ID: mdl-30363863

ABSTRACT

Fourteen compounds screened from 5 million compounds in silico were submitted to bioassay to find brassinolide (BL) agonists/antagonists against Arabidopsis thaliana. Of these, two N-benzoyl-N'-phenylpiperazine (NBNPP)-type compounds showed antagonistic activity; however, none showed agonistic activity against A. thaliana. The substituents at the benzoyl moiety of NBNPP were changed to OH groups to derive N-(3,4-dihydroxybenzoyl)-N'-(4-butanoyl-2-fluorophenyl)pyrazine, which was named NSBR1. NSBR1 was rationally designed based on docking simulations and molecular dynamics. NSBR1 significantly suppressed the gene expression of CPD and BR6-ox2, which are known as marker genes for the action of BL. This novel NSBR1 was also effective in the rice lamina inclination assay (RLIA), and the activity in terms of the 50% effective dose (ED50) was determined as 0.79 nmol/plant from the dose-response curve for RLIA.

SELECTION OF CITATIONS
SEARCH DETAIL
...