Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Science ; 381(6663): 1176-1182, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37708272

ABSTRACT

Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.


Subject(s)
Alzheimer Disease , Necroptosis , Neurons , RNA, Long Noncoding , Animals , Humans , Mice , Alzheimer Disease/pathology , Heterografts , Necroptosis/genetics , Neurons/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
2.
Cell Rep ; 40(8): 111280, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001964

ABSTRACT

Dysfunctions of network activity and functional connectivity (FC) represent early events in Alzheimer's disease (AD), but the underlying mechanisms remain unclear. Astrocytes regulate local neuronal activity in the healthy brain, but their involvement in early network hyperactivity in AD is unknown. We show increased FC in the human cingulate cortex several years before amyloid deposition. We find the same early cingulate FC disruption and neuronal hyperactivity in AppNL-F mice. Crucially, these network disruptions are accompanied by decreased astrocyte calcium signaling. Recovery of astrocytic calcium activity normalizes neuronal hyperactivity and FC, as well as seizure susceptibility and day/night behavioral disruptions. In conclusion, we show that astrocytes mediate initial features of AD and drive clinically relevant phenotypes.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/metabolism , Calcium/metabolism , Calcium Signaling , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neurons/metabolism
3.
Cell Stem Cell ; 28(10): 1805-1821.e8, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34033742

ABSTRACT

Neural stem cells residing in the hippocampal neurogenic niche sustain lifelong neurogenesis in the adult brain. Adult hippocampal neurogenesis (AHN) is functionally linked to mnemonic and cognitive plasticity in humans and rodents. In Alzheimer's disease (AD), the process of generating new neurons at the hippocampal neurogenic niche is impeded, yet the mechanisms involved are unknown. Here we identify miR-132, one of the most consistently downregulated microRNAs in AD, as a potent regulator of AHN, exerting cell-autonomous proneurogenic effects in adult neural stem cells and their progeny. Using distinct AD mouse models, cultured human primary and established neural stem cells, and human patient material, we demonstrate that AHN is directly affected by AD pathology. miR-132 replacement in adult mouse AD hippocampus restores AHN and relevant memory deficits. Our findings corroborate the significance of AHN in mouse models of AD and reveal the possible therapeutic potential of targeting miR-132 in neurodegeneration.


Subject(s)
Alzheimer Disease , MicroRNAs , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Hippocampus , Humans , Memory Disorders/genetics , Memory Disorders/therapy , Mice , MicroRNAs/genetics , Neurogenesis
5.
Mol Neurodegener ; 15(1): 3, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31915042

ABSTRACT

The amyloid-ß (Aß) peptide, the primary constituent of amyloid plaques found in Alzheimer's disease (AD) brains, is derived from sequential proteolytic processing of the Amyloid Precursor Protein (APP). However, the contribution of different cell types to Aß deposition has not yet been examined in an in vivo, non-overexpression system. Here, we show that endogenous APP is highly expressed in a heterogeneous subset of GABAergic interneurons throughout various laminae of the hippocampus, suggesting that these cells may have a profound contribution to AD plaque pathology. We then characterized the laminar distribution of amyloid burden in the hippocampus of an APP knock-in mouse model of AD. To examine the contribution of GABAergic interneurons to plaque pathology, we blocked Aß production specifically in these cells using a cell type-specific knock-out of BACE1. We found that during early stages of plaque deposition, interneurons contribute to approximately 30% of the total plaque load in the hippocampus. The greatest contribution to plaque load (75%) occurs in the stratum pyramidale of CA1, where plaques in human AD cases are most prevalent and where pyramidal cell bodies and synaptic boutons from perisomatic-targeting interneurons are located. These findings reveal a crucial role of GABAergic interneurons in the pathology of AD. Our study also highlights the necessity of using APP knock-in models to correctly evaluate the cellular contribution to amyloid burden since APP overexpressing transgenic models drive expression in cell types according to the promoter and integration site and not according to physiologically relevant expression mechanisms.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , GABAergic Neurons/pathology , Hippocampus/pathology , Interneurons/pathology , Plaque, Amyloid/pathology , Animals , Female , Gene Knock-In Techniques , Humans , Male , Mice
6.
EMBO J ; 38(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30745319

ABSTRACT

DSCAM and DSCAML1 are immunoglobulin and cell adhesion-type receptors serving important neurodevelopmental functions including control of axon growth, branching, neurite self-avoidance, and neuronal cell death. The signal transduction mechanisms or effectors of DSCAM receptors, however, remain poorly characterized. We used a human ORFeome library to perform a high-throughput screen in mammalian cells and identified novel cytoplasmic signaling effector candidates including the Down syndrome kinase Dyrk1a, STAT3, USP21, and SH2D2A. Unexpectedly, we also found that the intracellular domains (ICDs) of DSCAM and DSCAML1 specifically and directly interact with IPO5, a nuclear import protein of the importin beta family, via a conserved nuclear localization signal. The DSCAM ICD is released by γ-secretase-dependent cleavage, and both the DSCAM and DSCAML1 ICDs efficiently translocate to the nucleus. Furthermore, RNA sequencing confirms that expression of the DSCAM as well as the DSCAML1 ICDs alone can profoundly alter the expression of genes associated with neuronal differentiation and apoptosis, as well as synapse formation and function. Gain-of-function experiments using primary cortical neurons show that increasing the levels of either the DSCAM or the DSCAML1 ICD leads to an impairment of neurite growth. Strikingly, increased expression of either full-length DSCAM or the DSCAM ICD, but not the DSCAML1 ICD, significantly decreases synapse numbers in primary hippocampal neurons. Taken together, we identified a novel membrane-to-nucleus signaling mechanism by which DSCAM receptors can alter the expression of regulators of neuronal differentiation and synapse formation and function. Considering that chromosomal duplications lead to increased DSCAM expression in trisomy 21, our findings may help uncover novel mechanisms contributing to intellectual disability in Down syndrome.


Subject(s)
Active Transport, Cell Nucleus , Cell Adhesion Molecules/metabolism , Cell Nucleus/metabolism , Neurites/physiology , Synapses/physiology , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Adhesion , Cell Adhesion Molecules/genetics , Cell Nucleus/genetics , HEK293 Cells , Hippocampus/metabolism , Humans , Mice , Mice, Inbred C57BL , Neurogenesis , Neurons/metabolism , Protein Domains , Protein Interaction Domains and Motifs , beta Karyopherins/genetics , beta Karyopherins/metabolism
7.
Proc Natl Acad Sci U S A ; 116(1): 277-286, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30578322

ABSTRACT

The mitochondrial intramembrane rhomboid protease PARL has been implicated in diverse functions in vitro, but its physiological role in vivo remains unclear. Here we show that Parl ablation in mouse causes a necrotizing encephalomyelopathy similar to Leigh syndrome, a mitochondrial disease characterized by disrupted energy production. Mice with conditional PARL deficiency in the nervous system, but not in muscle, develop a similar phenotype as germline Parl KOs, demonstrating the vital role of PARL in neurological homeostasis. Genetic modification of two major PARL substrates, PINK1 and PGAM5, do not modify this severe neurological phenotype. Parl-/- brain mitochondria are affected by progressive ultrastructural changes and by defects in Complex III (CIII) activity, coenzyme Q (CoQ) biosynthesis, and mitochondrial calcium metabolism. PARL is necessary for the stable expression of TTC19, which is required for CIII activity, and of COQ4, which is essential in CoQ biosynthesis. Thus, PARL plays a previously overlooked constitutive role in the maintenance of the respiratory chain in the nervous system, and its deficiency causes progressive mitochondrial dysfunction and structural abnormalities leading to neuronal necrosis and Leigh-like syndrome.


Subject(s)
Electron Transport Complex III/metabolism , Leigh Disease/etiology , Metalloproteases/deficiency , Mitochondrial Proteins/deficiency , Ubiquinone/metabolism , Animals , Brain/metabolism , Calcium/metabolism , Leigh Disease/metabolism , Leigh Disease/physiopathology , Liver/metabolism , Male , Membrane Potential, Mitochondrial , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondrial Encephalomyopathies/metabolism , Mitochondrial Encephalomyopathies/physiopathology , Muscle, Skeletal/metabolism , Reactive Oxygen Species/metabolism
8.
Cell ; 170(3): 443-456.e14, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753424

ABSTRACT

Alzheimer's disease (AD)-linked mutations in Presenilins (PSEN) and the amyloid precursor protein (APP) lead to production of longer amyloidogenic Aß peptides. The shift in Aß length is fundamental to the disease; however, the underlying mechanism remains elusive. Here, we show that substrate shortening progressively destabilizes the consecutive enzyme-substrate (E-S) complexes that characterize the sequential γ-secretase processing of APP. Remarkably, pathogenic PSEN or APP mutations further destabilize labile E-S complexes and thereby promote generation of longer Aß peptides. Similarly, destabilization of wild-type E-S complexes by temperature, compounds, or detergent promotes release of amyloidogenic Aß. In contrast, E-Aßn stabilizers increase γ-secretase processivity. Our work presents a unifying model for how PSEN or APP mutations enhance amyloidogenic Aß production, suggests that environmental factors may increase AD risk, and provides the theoretical basis for the development of γ-secretase/substrate stabilizing compounds for the prevention of AD.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Membrane Proteins/metabolism , Peptide Hydrolases/metabolism , Presenilin-1/metabolism , Amyloid beta-Protein Precursor/chemistry , Animals , Brain/metabolism , Brain/pathology , Cell Line , Endopeptidases , Enzyme Stability , Female , HEK293 Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Models, Molecular , Mutation , Peptide Hydrolases/chemistry , Peptide Hydrolases/genetics , Presenilin-1/chemistry , Presenilin-1/genetics
9.
Mol Neurodegener ; 12(1): 25, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28279219

ABSTRACT

BACKGROUND: The mechanisms behind Aß-peptide accumulation in non-familial Alzheimer's disease (AD) remain elusive. Proteins of the tetraspanin family modulate Aß production by interacting to γ-secretase. METHODS: We searched for tetraspanins with altered expression in AD brains. The function of the selected tetraspanin was studied in vitro and the physiological relevance of our findings was confirmed in vivo. RESULTS: Tetraspanin-6 (TSPAN6) is increased in AD brains and overexpression in cells exerts paradoxical effects on Amyloid Precursor Protein (APP) metabolism, increasing APP-C-terminal fragments (APP-CTF) and Aß levels at the same time. TSPAN6 affects autophagosome-lysosomal fusion slowing down the degradation of APP-CTF. TSPAN6 recruits also the cytosolic, exosome-forming adaptor syntenin which increases secretion of exosomes that contain APP-CTF. CONCLUSIONS: TSPAN6 is a key player in the bifurcation between lysosomal-dependent degradation and exosome mediated secretion of APP-CTF. This corroborates the central role of the autophagosomal/lysosomal pathway in APP metabolism and shows that TSPAN6 is a crucial player in APP-CTF turnover.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Tetraspanins/metabolism , Animals , Blotting, Western , Exosomes/metabolism , Exosomes/ultrastructure , Humans , Imaging, Three-Dimensional , Immunohistochemistry , Lysosomes/metabolism , Lysosomes/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Neurons/metabolism , Real-Time Polymerase Chain Reaction
11.
Sci Transl Med ; 7(309): 309ra164, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26468326

ABSTRACT

The orphan G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) GPR3 regulates activity of the γ-secretase complex in the absence of an effect on Notch proteolysis, providing a potential therapeutic target for Alzheimer's disease (AD). However, given the vast resources required to develop and evaluate any new therapy for AD and the multiple failures involved in translational research, demonstration of the pathophysiological relevance of research findings in multiple disease-relevant models is necessary before initiating costly drug development programs. We evaluated the physiological consequences of loss of Gpr3 in four AD transgenic mouse models, including two that contain the humanized murine Aß sequence and express similar amyloid precursor protein (APP) levels as wild-type mice, thereby reducing potential artificial phenotypes. Our findings reveal that genetic deletion of Gpr3 reduced amyloid pathology in all of the AD mouse models and alleviated cognitive deficits in APP/PS1 mice. Additional three-dimensional visualization and analysis of the amyloid plaque burden provided accurate information on the amyloid load, distribution, and volume in the structurally intact adult mouse brain. Analysis of 10 different regions in healthy human postmortem brain tissue indicated that GPR3 expression was stable during aging. However, two cohorts of human AD postmortem brain tissue samples showed a correlation between elevated GPR3 and AD progression. Collectively, these studies provide evidence that GPR3 mediates the amyloidogenic proteolysis of APP in four AD transgenic mouse models as well as the physiological processing of APP in wild-type mice, suggesting that GPR3 may be a potential therapeutic target for AD drug development.


Subject(s)
Alzheimer Disease/physiopathology , Alzheimer Disease/therapy , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/physiology , Animals , Brain/physiology , Gene Deletion , Gene Expression , Humans , Mice , Mice, Transgenic , Models, Animal , Plaque, Amyloid/pathology
12.
J Cell Sci ; 128(3): 589-98, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25501811

ABSTRACT

The structure and function of the gamma-secretase proteases are of great interest because of their crucial roles in cellular and disease processes. We established a novel purification protocol for the gamma-secretase complex that involves a conformation- and complex-specific nanobody, yielding highly pure and active enzyme. Using single particle electron microscopy, we analyzed the gamma-secretase structure and its conformational variability. Under steady-state conditions, the complex adopts three major conformations, which differ in overall compactness and relative position of the nicastrin ectodomain. Occupancy of the active or substrate-binding sites by inhibitors differentially stabilizes subpopulations of particles with compact conformations, whereas a mutation linked to familial Alzheimer disease results in enrichment of extended-conformation complexes with increased flexibility. Our study presents the csecretase complex as a dynamic population of interconverting conformations, involving rearrangements at the nanometer scale and a high level of structural interdependence between subunits. The fact that protease inhibition or clinical mutations, which affect amyloid beta (Abeta) generation, enrich for particular subpopulations of conformers indicates the functional relevance of the observed dynamic changes, which are likely to be instrumental for highly allosteric behavior of the enzyme.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Catalytic Domain/drug effects , Protein Subunits/metabolism , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Animals , Cell Line , Flavin-Adenine Dinucleotide/genetics , HEK293 Cells , Humans , Insecta , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microscopy, Electron , Protein Conformation
13.
J Neurosci ; 33(32): 12915-28, 12928a, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23926248

ABSTRACT

The metalloproteinase ADAM10 is of importance for Notch-dependent cortical brain development. The protease is tightly linked with α-secretase activity toward the amyloid precursor protein (APP) substrate. Increasing ADAM10 activity is suggested as a therapy to prevent the production of the neurotoxic amyloid ß (Aß) peptide in Alzheimer's disease. To investigate the function of ADAM10 in postnatal brain, we generated Adam10 conditional knock-out (A10cKO) mice using a CaMKIIα-Cre deleter strain. The lack of ADAM10 protein expression was evident in the brain cortex leading to a reduced generation of sAPPα and increased levels of sAPPß and endogenous Aß peptides. The A10cKO mice are characterized by weight loss and increased mortality after weaning associated with seizures. Behavioral comparison of adult mice revealed that the loss of ADAM10 in the A10cKO mice resulted in decreased neuromotor abilities and reduced learning performance, which were associated with altered in vivo network activities in the hippocampal CA1 region and impaired synaptic function. Histological and ultrastructural analysis of ADAM10-depleted brain revealed astrogliosis, microglia activation, and impaired number and altered morphology of postsynaptic spine structures. A defect in spine morphology was further supported by a reduction of the expression of NMDA receptors subunit 2A and 2B. The reduced shedding of essential postsynaptic cell adhesion proteins such as N-Cadherin, Nectin-1, and APP may explain the postsynaptic defects and the impaired learning, altered network activity, and synaptic plasticity of the A10cKO mice. Our study reveals that ADAM10 is instrumental for synaptic and neuronal network function in the adult murine brain.


Subject(s)
ADAM Proteins/deficiency , Amyloid Precursor Protein Secretases/deficiency , Brain/ultrastructure , Dendritic Spines/pathology , Epilepsy/genetics , Epilepsy/pathology , Learning Disabilities/pathology , Membrane Proteins/deficiency , Synapses/pathology , ADAM10 Protein , Amyloid beta-Protein Precursor/metabolism , Animals , Animals, Newborn , Brain/pathology , Cadherins/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Adhesion Molecules/metabolism , Dendritic Spines/metabolism , Disease Models, Animal , Gene Expression Regulation, Developmental/genetics , Gliosis/genetics , Learning Disabilities/genetics , Mice , Mice, Transgenic , Nectins , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism , Synapses/ultrastructure
14.
Nat Med ; 19(1): 43-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23202293

ABSTRACT

ß-arrestins are associated with numerous aspects of G protein-coupled receptor (GPCR) signaling and regulation and accordingly influence diverse physiological and pathophysiological processes. Here we report that ß-arrestin 2 expression is elevated in two independent cohorts of individuals with Alzheimer's disease. Overexpression of ß-arrestin 2 leads to an increase in amyloid-ß (Aß) peptide generation, whereas genetic silencing of Arrb2 (encoding ß-arrestin 2) reduces generation of Aß in cell cultures and in Arrb2(-/-) mice. Moreover, in a transgenic mouse model of Alzheimer's disease, genetic deletion of Arrb2 leads to a reduction in the production of Aß(40) and Aß(42). Two GPCRs implicated previously in Alzheimer's disease (GPR3 and the ß(2)-adrenergic receptor) mediate their effects on Aß generation through interaction with ß-arrestin 2. ß-arrestin 2 physically associates with the Aph-1a subunit of the γ-secretase complex and redistributes the complex toward detergent-resistant membranes, increasing the catalytic activity of the complex. Collectively, these studies identify ß-arrestin 2 as a new therapeutic target for reducing amyloid pathology and GPCR dysfunction in Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/biosynthesis , Arrestins/metabolism , Receptors, Adrenergic, beta-2/metabolism , Animals , Arrestins/genetics , CHO Cells , Cell Line , Cricetinae , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestin 2 , beta-Arrestins
15.
J Biol Chem ; 286(25): 22339-47, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21531718

ABSTRACT

Missense mutations in presenilin 1 (PS1) and presenilin 2 (PS2) proteins are a major cause of familial Alzheimer disease. Presenilins are proteins with nine transmembrane (TM) domains that function as catalytic subunits of the γ-secretase complex responsible for the cleavage of the amyloid precursor protein and other type I transmembrane proteins. The water-filled cavity within presenilin is necessary to mediate the intramembrane proteolysis reaction. Consistent with this idea, cysteine-scanning mutagenesis and NMR studies revealed a number of water-accessible residues within TM7 and TM9 of mouse PS1. In addition to γ-secretase function, presenilins also demonstrate a low conductance endoplasmic reticulum Ca(2+) leak function, and many familial Alzheimer disease presenilin mutations impair this function. To map the potential Ca(2+) conductance pore in PS1, we systematically evaluated endoplasmic reticulum Ca(2+) leak activity supported by a series of cysteine point mutants in TM6, TM7, and TM9 of mouse PS1. The results indicate that TM7 and TM9, but not TM6, could play an important role in forming the conductance pore of PS1. These results are consistent with previous cysteine-scanning mutagenesis and NMR analyses of PS1 and provide further support for our hypothesis that the hydrophilic catalytic cavity of presenilins may also constitute a Ca(2+) conductance pore.


Subject(s)
Calcium/metabolism , Electric Conductivity , Mutagenesis , Presenilin-1/genetics , Presenilin-1/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Cysteine , Endoplasmic Reticulum/metabolism , Hydrophobic and Hydrophilic Interactions , Mice , Mutation , Porosity , Presenilin-1/chemistry , Protein Structure, Tertiary
16.
Science ; 324(5927): 639-42, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19299585

ABSTRACT

The gamma-secretase complex plays a role in Alzheimer's disease and cancer progression. The development of clinically useful inhibitors, however, is complicated by the role of the gamma-secretase complex in regulated intramembrane proteolysis of Notch and other essential proteins. Different gamma-secretase complexes containing different Presenilin or Aph1 protein subunits are present in various tissues. Here we show that these complexes have heterogeneous biochemical and physiological properties. Specific inactivation of the Aph1B gamma-secretase in a mouse Alzheimer's disease model led to improvements of Alzheimer's disease-relevant phenotypic features without any Notch-related side effects. The Aph1B complex contributes to total gamma-secretase activity in the human brain, and thus specific targeting of Aph1B-containing gamma-secretase complexes may help generate less toxic therapies for Alzheimer's disease.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Endopeptidases/metabolism , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/chemistry , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Endopeptidases/chemistry , Endopeptidases/genetics , Female , Humans , Maze Learning , Membrane Proteins/metabolism , Memory , Mice , Neurons/metabolism , Peptide Fragments/analysis , Peptide Fragments/metabolism , Peptide Hydrolases/metabolism , Presenilin-1/chemistry , Presenilin-1/genetics , Presenilin-1/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Receptor, Notch1/metabolism , Signal Transduction
17.
Science ; 323(5916): 946-51, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19213921

ABSTRACT

Deposition of the amyloid-beta peptide is a pathological hallmark of Alzheimer's disease. A high-throughput functional genomics screen identified G protein-coupled receptor 3 (GPR3), a constitutively active orphan G protein-coupled receptor, as a modulator of amyloid-beta production. Overexpression of GPR3 stimulated amyloid-beta production, whereas genetic ablation of GPR3 prevented accumulation of the amyloid-beta peptide in vitro and in an Alzheimer's disease mouse model. GPR3 expression led to increased formation and cell-surface localization of the mature gamma-secretase complex in the absence of an effect on Notch processing. GPR3 is highly expressed in areas of the normal human brain implicated in Alzheimer's disease and is elevated in the sporadic Alzheimer's disease brain. Thus, GPR3 represents a potential therapeutic target for the treatment of Alzheimer's disease.


Subject(s)
Amyloid beta-Peptides/biosynthesis , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Adult , Aged , Amyloid Precursor Protein Secretases/metabolism , Animals , Cell Line , Cell Line, Tumor , Cells, Cultured , Female , Humans , Male , Mice , Middle Aged , Protein Structure, Tertiary , Receptors, Notch/metabolism , Signal Transduction
18.
Neurobiol Dis ; 33(3): 422-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19110058

ABSTRACT

Gene dosage effects of Amyloid precursor protein (APP) can cause familial AD. Recent evidence suggest that microRNA (miRNA) pathways, implicated in gene transcriptional control, could be involved in the development of sporadic Alzheimer's disease (AD). We therefore investigated whether miRNAs could participate in the regulation of APP gene expression. We show that miRNAs belonging to the miR-20a family (that is, miR-20a, miR-17-5p and miR-106b) could regulate APP expression in vitro and at the endogenous level in neuronal cell lines. A tight correlation between these miRNAs and APP was found during brain development and in differentiating neurons. We thus identify miRNAs as novel endogenous regulators of APP expression, suggesting that variations in miRNA expression could contribute to changes in APP expression in the brain during development and disease. This possibility is further corroborated by the observation that a statistically significant decrease in miR-106b expression was found in sporadic AD patients.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Gene Expression Regulation , MicroRNAs/physiology , Neurons/physiology , Receptors, Cell Surface/genetics , Actins/metabolism , Animals , Blotting, Northern , Blotting, Western , Brain/embryology , Brain/growth & development , Brain/physiology , Cell Line , Cells, Cultured , Densitometry , Humans , Mice , Neurogenesis , Protease Nexins , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Transfection
19.
J Biol Chem ; 283(28): 19793-803, 2008 Jul 11.
Article in English | MEDLINE | ID: mdl-18482978

ABSTRACT

One of the most prominent drug targets for the treatment of Alzheimer disease is gamma-secretase, a multi-protein complex responsible for the generation of the amyloid-beta peptide. The catalytic core of the complex lies on presenilin, a multi-spanning membrane protease, the activity of which depends on two aspartate residues located in transmembrane domains 6 and 7. We have recently shown by cysteine-scanning mutagenesis that these aspartates are facing a water-filled cavity in the lipid bilayer, demonstrating how proteolytic cleavage of the substrates can be taking place within the membrane. Here, we demonstrate that transmembrane domain 9 and hydrophobic domain VII in the large cytoplasmic loop of presenilin are dynamic structural parts of this cavity. Hydrophobic domain VII is associated with transmembrane domain 7 in the membrane, probably facilitating the entrance of water molecules in the catalytic site. Transmembrane domain 9, on the other hand, exhibits a highly flexible structure, potentially involved in the transport of substrates to the catalytic site, as well as in the binding of gamma-secretase inhibitors. The conserved proline-alanine-leucine motif at the cytoplasmic part of this domain is extremely close to the catalytic Asp257 and is crucial for conformational changes leading to the activation of the catalytic site. We, also, identify a unique mutant in this domain (I437C) that specifically blocks amyloid-beta peptide production without affecting the processing of the physiologically indispensable Notch substrate. Our data are finally combined to propose a model for the architectural organization and activation of the catalytic site of presenilin.


Subject(s)
Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Peptides/chemistry , Lipid Bilayers/chemistry , Models, Molecular , Peptides/chemistry , Presenilins/chemistry , Alzheimer Disease/enzymology , Alzheimer Disease/genetics , Amino Acid Substitution , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Catalytic Domain/physiology , Humans , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/metabolism , Mutagenesis , Peptides/genetics , Peptides/metabolism , Presenilins/genetics , Presenilins/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Structure, Tertiary/physiology
20.
Proc Natl Acad Sci U S A ; 105(17): 6415-20, 2008 Apr 29.
Article in English | MEDLINE | ID: mdl-18434550

ABSTRACT

Although the role of APP and PSEN genes in genetic Alzheimer's disease (AD) cases is well established, fairly little is known about the molecular mechanisms affecting Abeta generation in sporadic AD. Deficiency in Abeta clearance is certainly a possibility, but increased expression of proteins like APP or BACE1/beta-secretase may also be associated with the disease. We therefore investigated changes in microRNA (miRNA) expression profiles of sporadic AD patients and found that several miRNAs potentially involved in the regulation of APP and BACE1 expression appeared to be decreased in diseased brain. We show here that miR-29a, -29b-1, and -9 can regulate BACE1 expression in vitro. The miR-29a/b-1 cluster was significantly (and AD-dementia-specific) decreased in AD patients displaying abnormally high BACE1 protein. Similar correlations between expression of this cluster and BACE1 were found during brain development and in primary neuronal cultures. Finally, we provide evidence for a potential causal relationship between miR-29a/b-1 expression and Abeta generation in a cell culture model. We propose that loss of specific miRNAs can contribute to increased BACE1 and Abeta levels in sporadic AD.


Subject(s)
Alzheimer Disease/enzymology , Amyloid Precursor Protein Secretases/genetics , Aspartic Acid Endopeptidases/genetics , MicroRNAs/genetics , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Brain/pathology , Cell Line , Gene Expression Profiling , Gene Expression Regulation, Developmental , Humans , Mice , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...