Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Aging Cell ; 22(11): e13919, 2023 11.
Article in English | MEDLINE | ID: mdl-37403257

ABSTRACT

Caloric restriction is a non-pharmacological intervention known to ameliorate the metabolic defects associated with aging, including insulin resistance. The levels of miRNA expression may represent a predictive tool for aging-related alterations. In order to investigate the role of miRNAs underlying insulin resistance in adipose tissue during the early stages of aging, 3- and 12-month-old male animals fed ad libitum, and 12-month-old male animals fed with a 20% caloric restricted diet were used. In this work we demonstrate that specific miRNAs may contribute to the impaired insulin-stimulated glucose metabolism specifically in the subcutaneous white adipose tissue, through the regulation of target genes implicated in the insulin signaling cascade. Moreover, the expression of these miRNAs is modified by caloric restriction in middle-aged animals, in accordance with the improvement of the metabolic state. Overall, our work demonstrates that alterations in posttranscriptional gene expression because of miRNAs dysregulation might represent an endogenous mechanism by which insulin response in the subcutaneous fat depot is already affected at middle age. Importantly, caloric restriction could prevent this modulation, demonstrating that certain miRNAs could constitute potential biomarkers of age-related metabolic alterations.


Subject(s)
Insulin Resistance , MicroRNAs , Animals , Male , Insulin/metabolism , Caloric Restriction , Insulin Resistance/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue/metabolism , Aging/metabolism
2.
Hepatology ; 77(3): 874-887, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35592906

ABSTRACT

Obesity features excessive fat accumulation in several body tissues and induces a state of chronic low-grade inflammation that contributes to the development of diabetes, steatosis, and insulin resistance. Recent research has shown that this chronic inflammation is crucially dependent on p38 pathway activity in macrophages, suggesting p38 inhibition as a possible treatment for obesity comorbidities. Nevertheless, we report here that lack of p38 activation in myeloid cells worsens high-fat diet-induced obesity, diabetes, and steatosis. Deficient p38 activation increases macrophage IL-12 production, leading to inhibition of hepatic FGF21 and reduction of thermogenesis in the brown fat. The implication of FGF21 in the phenotype was confirmed by its specific deletion in hepatocytes. We also found that IL-12 correlates with liver damage in human biopsies, indicating the translational potential of our results. Our findings suggest that myeloid p38 has a dual role in inflammation and that drugs targeting IL-12 might improve the homeostatic regulation of energy balance in response to metabolic stress.


Subject(s)
Fatty Liver , Insulin Resistance , Humans , Animals , Mice , Interleukin-12 , Obesity/metabolism , Fatty Liver/metabolism , Adipose Tissue, Brown/metabolism , Energy Metabolism , Inflammation/metabolism , Diet, High-Fat , Macrophages/metabolism , Thermogenesis , Mice, Inbred C57BL
3.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35563069

ABSTRACT

Uncoupling of metabolism and circadian activity is associated with an increased risk of a wide spectrum of pathologies. Recently, insulin and the closely related insulin-like growth factor I (IGF-I) were shown to entrain feeding patterns with circadian rhythms. Both hormones act centrally to modulate peripheral glucose metabolism; however, whereas central targets of insulin actions are intensely scrutinized, those mediating the actions of IGF-I remain less defined. We recently showed that IGF-I targets orexin neurons in the lateral hypothalamus, and now we evaluated whether IGF-I modulates orexin neurons to align circadian rhythms with metabolism. Mice with disrupted IGF-IR activity in orexin neurons (Firoc mice) showed sexually dimorphic alterations in daily glucose rhythms and feeding activity patterns which preceded the appearance of metabolic disturbances. Thus, Firoc males developed hyperglycemia and glucose intolerance, while females developed obesity. Since IGF-I directly modulates orexin levels and hepatic expression of KLF genes involved in circadian and metabolic entrainment in an orexin-dependent manner, it seems that IGF-I entrains metabolism and circadian rhythms by modulating the activity of orexin neurons.


Subject(s)
Circadian Rhythm , Hypothalamus , Insulin-Like Growth Factor I , Animals , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Female , Hypothalamus/metabolism , Insulin/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Male , Mice , Neurons/metabolism , Orexins/metabolism
4.
Nat Immunol ; 20(5): 581-592, 2019 05.
Article in English | MEDLINE | ID: mdl-30962591

ABSTRACT

Succinate is a signaling metabolite sensed extracellularly by succinate receptor 1 (SUNCR1). The accumulation of succinate in macrophages is known to activate a pro-inflammatory program; however, the contribution of SUCNR1 to macrophage phenotype and function has remained unclear. Here we found that activation of SUCNR1 had a critical role in the anti-inflammatory responses in macrophages. Myeloid-specific deficiency in SUCNR1 promoted a local pro-inflammatory phenotype, disrupted glucose homeostasis in mice fed a normal chow diet, exacerbated the metabolic consequences of diet-induced obesity and impaired adipose-tissue browning in response to cold exposure. Activation of SUCNR1 promoted an anti-inflammatory phenotype in macrophages and boosted the response of these cells to type 2 cytokines, including interleukin-4. Succinate decreased the expression of inflammatory markers in adipose tissue from lean human subjects but not that from obese subjects, who had lower expression of SUCNR1 in adipose-tissue-resident macrophages. Our findings highlight the importance of succinate-SUCNR1 signaling in determining macrophage polarization and assign a role to succinate in limiting inflammation.


Subject(s)
Inflammation/immunology , Macrophages/immunology , Obesity/immunology , Receptors, G-Protein-Coupled/immunology , Adipose Tissue/drug effects , Adipose Tissue/immunology , Adipose Tissue/metabolism , Animals , Cells, Cultured , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Gene Expression Profiling/methods , Humans , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/genetics , Obesity/metabolism , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics , Succinic Acid/immunology , Succinic Acid/metabolism , Succinic Acid/pharmacology , THP-1 Cells
5.
Aging Cell ; 18(3): e12948, 2019 06.
Article in English | MEDLINE | ID: mdl-30920127

ABSTRACT

Age-related increased adiposity is an important contributory factor in the development of insulin resistance (IR) and is associated with metabolic defects. Caloric restriction (CR) is known to induce weight loss and to decrease adiposity while preventing metabolic risk factors. Here, we show that moderate 20% CR delays early deleterious effects of aging on white and brown adipose tissue (WAT and BAT, respectively) function and improves peripheral IR. To elucidate the role of CR in delaying early signs of aging, young (3 months), middle-aged (12 months), and old (20 months) mice fed al libitum and middle-aged and old mice subjected to early-onset CR were used. We show that impaired plasticity of subcutaneous WAT (scWAT) contributes to IR, which is already evident in middle-aged mice. Moreover, alteration of thyroid axis status with age is an important factor contributing to BAT dysfunction in middle-aged animals. Both defects in WAT and BAT/beige cells are ameliorated by CR. Accordingly, CR attenuated the age-related decline in scWAT function and decreased the extent of fibro-inflammation. Furthermore, CR promoted scWAT browning. In brief, our study identifies the contribution of scWAT impairment to age-associated metabolic dysfunction and identifies browning in response to food restriction, as a potential therapeutic strategy to prevent the adverse metabolic effects in middle-aged animals.


Subject(s)
Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Aging/metabolism , Caloric Restriction , Animals , Glucose Tolerance Test , Male , Mice , Mice, 129 Strain , Positron Emission Tomography Computed Tomography
6.
Diabetologia ; 62(1): 123-135, 2019 01.
Article in English | MEDLINE | ID: mdl-30327824

ABSTRACT

AIMS/HYPOTHESIS: Pleiotrophin, a developmentally regulated and highly conserved cytokine, exerts different functions including regulation of cell growth and survival. Here, we hypothesise that this cytokine can play a regulatory role in glucose and lipid homeostasis. METHODS: To test this hypothesis, we performed a longitudinal study characterising the metabolic profile (circulating variables and tissue mRNA expression) of gene-targeted Ptn-deficient female mice and their corresponding wild-type counterparts at different ages from young adulthood (3 months) to older age (15 months). Metabolic cages were used to investigate the respiratory exchange ratio and energy expenditure, at both 24°C and 30°C. Undifferentiated immortalised mouse brown adipocytes (mBAs) were treated with 0.1 µg/ml pleiotrophin until day 6 of differentiation, and markers of mBA differentiation were analysed by quantitative real-time PCR (qPCR). RESULTS: Ptn deletion was associated with a reduction in total body fat (20.2% in Ptn+/+ vs 13.9% in Ptn-/- mice) and an enhanced lipolytic response to isoprenaline in isolated adipocytes from 15-month-old mice (189% in Ptn+/+ vs 273% in Ptn-/- mice). We found that Ptn-/- mice exhibited a significantly lower QUICKI value and an altered lipid profile; plasma triacylglycerols and NEFA did not increase with age, as happens in Ptn+/+ mice. Furthermore, the contribution of cold-induced thermogenesis to energy expenditure was greater in Ptn-/- than Ptn+/+ mice (42.6% and 33.6%, respectively). Body temperature and the activity and expression of deiodinase, T3 and mitochondrial uncoupling protein-1 in the brown adipose tissue of Ptn-/- mice were higher than in wild-type controls. Finally, supplementing brown pre-adipocytes with pleiotrophin decreased the expression of the brown adipocyte markers Cidea (20% reduction), Prdm16 (21% reduction), and Pgc1-α (also known as Ppargc1a, 11% reduction). CONCLUSIONS/INTERPRETATION: Our results reveal for the first time that pleiotrophin is a key player in preserving insulin sensitivity, driving the dynamics of adipose tissue lipid turnover and plasticity, and regulating energy metabolism and thermogenesis. These findings open therapeutic avenues for the treatment of metabolic disorders by targeting pleiotrophin in the crosstalk between white and brown adipose tissue.


Subject(s)
Adipose Tissue, Brown/metabolism , Carrier Proteins/metabolism , Cytokines/metabolism , Energy Metabolism/physiology , Thermogenesis/physiology , Animals , Carrier Proteins/genetics , Cytokines/genetics , Energy Metabolism/genetics , Female , Insulin Resistance/genetics , Insulin Resistance/physiology , Longitudinal Studies , Mice , Mice, Knockout , Thermogenesis/genetics
7.
Mol Med ; 22: 724-736, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27782293

ABSTRACT

Pregnancy requires the adaptation of maternal energy metabolism including expansion and functional modifications of adipose tissue. Insulin resistance (IR), predominantly during late gestation, is a physiological metabolic adaptation that serves to support the metabolic demands of fetal growth. The molecular mechanisms underlying these adaptations are not fully understood and may contribute to gestational diabetes mellitus. Peroxisome proliferator-activated receptor gamma (PPARγ) controls adipogenesis, glucose and lipid metabolism and insulin sensitivity. The PPARγ2 isoform is mainly expressed in adipocytes and is thus likely to contribute to adipose tissue adaptation during late pregnancy. In the present study, we investigated the contribution of PPARγ2 to the metabolic adaptations occurring during the late phase of pregnancy in the context of IR. Using a model of late pregnancy in PPARγ2 knockout (KO) mice, we found that deletion of PPARγ2 exacerbated IR in association with lower serum adiponectin levels, increased body weight and enhanced lipid accumulation in liver. Lack of PPARγ2 provoked changes in the distribution of fat mass and preferentially prevented the expansion of the perigonadal depot while at the same time exacerbating inflammation. PPARγ2KO pregnant mice presented adipose tissue depot-dependent decreased expression of genes involved in lipid metabolism. Collectively, these data indicate that PPARγ2 is essential to promote healthy adipose tissue expansion and immune and metabolic functionality during pregnancy, contributing to the physiological adaptations that lead gestation to term.

8.
J Gerontol A Biol Sci Med Sci ; 71(3): 310-22, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26419977

ABSTRACT

The prevalence of insulin resistance and type 2 diabetes increases with aging and these disorders are associated with inflammation. Insulin resistance and inflammation do not develop at the same time in all tissues. Adipose tissue is one of the tissues where inflammation and insulin resistance are established earlier during aging. Nevertheless, the existence of different fat depots states the possibility of differential roles for these depots in the development of age-associated inflammation and insulin resistance. To explore this, we analyzed insulin signaling and inflammation in epididymal, perirenal, subcutaneous, and brown adipose tissues during aging in Wistar rats. Although all tissues showed signs of inflammation and insulin resistance with aging, epididymal fat was the first to develop signs of inflammation and insulin resistance along aging among white fat tissues. Subcutaneous adipose tissue presented the lowest degree of inflammation and insulin resistance that developed latter with age. Brown adipose tissue also presented latter insulin resistance and inflammation but with lower signs of macrophage infiltration. Caloric restriction ameliorated insulin resistance and inflammation in all tissues, being more effective in subcutaneous and brown adipose tissues. These data demonstrate differential susceptibility of the different adipose depots to the development of age-associated insulin resistance and inflammation.


Subject(s)
Adipose Tissue/metabolism , Adiposity/physiology , Aging/metabolism , Caloric Restriction/methods , Diabetes Mellitus, Experimental/complications , Inflammation/etiology , Insulin Resistance/physiology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Inflammation/metabolism , Inflammation/prevention & control , Male , Rats , Rats, Wistar
9.
Mech Ageing Dev ; 133(7): 489-97, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22733037

ABSTRACT

Aged Wistar rats present central insulin resistance associated with ageing. Several steps of the insulin signaling pathway have been described to be impaired in aged rats at hypothalamic level. In the present article we have explored possible alterations in protein tyrosine phosphatases (PTPs) involved in insulin receptor dephosphorylation, as well as pro-inflammatory pathways and serine kinases such as inhibitory kappa ß kinase-nuclear factor kappa-B (IKKß-NFκB), p38 mitogen-activated protein kinase (p38) and protein kinase C θ (PKCθ) that may also be involved in the decreased insulin signaling during ageing. We detected that ageing brings about a specific increase in insulin receptor tyrosine phosphatase activity and PTP1B serine phosphorylation. Increased association of PTP1B and leukocyte common antigen-related tyrosine protein phosphatase (LAR) with insulin receptor was also observed in hypothalamus from aged rats. Besides these mechanisms, increased activation of the IKKß-NFκB pathway, p38 and PKCθ serine/threonine kinases were also detected. These data contribute to explain the hypothalamic insulin resistance associated with ageing. Caloric restriction ameliorates most of the effects of ageing on the above mentioned increases in PTPs and serine/threonine kinases activities and points to age-associated adiposity and inflammation as key factors in the development of age-associated insulin resistance.


Subject(s)
Aging/metabolism , Caloric Restriction , Hypothalamus/enzymology , I-kappa B Kinase/metabolism , Insulin Resistance , Nerve Tissue Proteins/metabolism , Protein Kinase C/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Aging/pathology , Animals , Insulin/metabolism , Male , Rats , Rats, Wistar , Signal Transduction
10.
Arch Physiol Biochem ; 117(3): 140-50, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21635187

ABSTRACT

CONTEXT: Insulin resistance and type 2 Diabetes have been associated to a low grade of inflammation and their prevalence increase with ageing. OBJECTIVE: To analyse the development of inflammation in adipose tissue, liver, muscle and hypothalamus during ageing and the effects of caloric restriction. MATERIALS AND METHODS: We have analysed the expression of inflammatory cytokines (TNFα, IL1-ß, IL-12B and IL-6), proteins involved in macrophage recruitment (MCP-1, CCR2), TLR4 and macrophage markers (CD11c, CD11b and arginase1). Immunohistochemistry of macrophages has also been performed. RESULTS: All studied tissues present signs of inflammation during ageing, but with different pattern and intensity. Caloric restriction decreases the expression of most of inflammatory markers. DISCUSSION AND CONCLUSIONS: These data indicate a role of adiposity in the development of inflammation and insulin resistance during ageing. Dietetic intervention could be a useful tool to ameliorate the development of inflammation and insulin resistance associated with ageing.


Subject(s)
Aging/physiology , Caloric Restriction , Inflammation/metabolism , Rats, Wistar , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Biomarkers/metabolism , Cytokines/metabolism , Endoplasmic Reticulum/metabolism , Humans , Hypothalamus/metabolism , Hypothalamus/pathology , Insulin Resistance/physiology , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Oxidative Stress , RNA/metabolism , Random Allocation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...