Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 112(40): 9751-7, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18781727

ABSTRACT

This paper demonstrates how a quantum cascade laser (QCL) in its intrapulse mode can provide a simple method for probing the products of a photolysis event. The system studied is the 266 nm photodissociation of CF3I with the CF3 fragments subsequently detected using radiation at approximately 1253 cm(-1) generated by a pulsed QCL. The tuning range provided by the frequency down-chirp of the QCL operated in its intrapulse mode allows a approximately 1 cm(-1) segment of the CF3 nu3 band to be measured following each photolysis laser pulse. Identification of features within this spectral region allows the CF3 ( v = 0) number density to be calculated as a function of pump-probe delay, and consequently the processes which populate and deplete this quantum state may be examined. Rate constants for the population cascade from higher vibrational levels into the v = 0 state, k 1, and for the recombination of the CF3 radicals to form C2F6, k2, are measured. The returned values of k1 = (2.3 +/- 0.34) x 10(-12) cm(3) molecule(-1) s(-1) and k2 = (3.9 +/- 0.34) x 10(-12) cm(3) molecule(-1) s(-1) are found to be in good agreement with reported literature values.

2.
J Chem Phys ; 127(14): 144304, 2007 Oct 14.
Article in English | MEDLINE | ID: mdl-17935392

ABSTRACT

Speed distributions, and spatial anisotropy and atomic angular momentum polarization parameters have been determined for the O((3)P(J)) products following the photodissociation of ozone at 248 and 226 nm using velocity map ion imaging. The data have been interpreted in terms of two dissociation mechanisms that give rise to fast and slow products. In both cases, excitation is believed to occur to the B state. Consistent with previous interpretations, the speed distributions, translational anisotropy parameters, and angular momentum polarization moments support the assignment of the major pathway to curve crossing from the B to the repulsive R surface, generating fast fragments in a wide range of vibrational states. For the slow fragments, it is proposed that following excitation to the B state, the system crosses onto the A state. The crossing seam is only accessible to molecules that are highly vibrationally excited and therefore possess modest recoil speeds. Once on the A state, the wavepacket is thought to funnel through a conical intersection to the ground state. The velocity distributions, spatial anisotropy parameters, spin-orbit populations and polarization data each lend support to this mechanism.

3.
J Chem Phys ; 127(11): 114308, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17887838

ABSTRACT

The translational anisotropy and rotational angular momentum polarization of a selection of rotational states of the O2 (a 1Deltag; v=0) photofragment formed from ozone photolysis at 248, 260, and 265 nm have been determined using the technique of resonance enhanced multiphoton ionization in combination with time of flight mass spectrometry. At 248 nm, the dissociation is well described as impulsive in nature with all rotational states exhibiting similarly large, near-limiting values for the bipolar moments describing their angular momentum alignment and orientation. At 265 nm, however, the angular momentum polarization parameters determined for consecutive odd and even rotational states exhibit clear differences. Studies at the intermediate wavelength of 260 nm strongly suggest that such a difference in the angular momentum polarization is speed dependent and this proposal is consistent with the angular momentum polarization parameters extracted and reported previously for longer photolysis wavelengths [G. Hancock et al., Phys. Chem. Chem. Phys. 5, 5386 (2003); S. J. Horrocks et al., J. Chem. Phys. 126, 044308 (2007)]. The alternation of angular momentum polarization for successive odd and even J states may be a consequence of the different mechanisms leading to the formation of the two O2 (a 1Deltag) Lambda doublets. Specifically, the involvement of out of plane parent rotational motion is proposed as the origin for the observed depolarization for the Delta- relative to the Delta+ state.

4.
J Chem Phys ; 126(4): 044308, 2007 Jan 28.
Article in English | MEDLINE | ID: mdl-17286471

ABSTRACT

The technique of resonance enhanced multiphoton ionization (REMPI) has been used in conjunction with time-of-flight mass spectrometry (TOFMS), to investigate the dynamics of ozone photolysis in the long wavelength region of the Hartley band (301-311 nm). Specifically, both the translational anisotropy and the rotational angular momentum orientation of the O(2) (a (1)Delta(g); nu=0, J=16-20) fragments have been measured as a function of photolysis wavelength. Within this region, the thermodynamic thresholds for the formation of these products in combination with O ((1)D(2)) are approached and passed, and consequently these studies have allowed an investigation into the effects on the dynamics of slowing fragment recoil velocities and the increasing importance of vibrationally mediated photolysis. The determined beta parameters for all the J states probed follow a similar trend, decreasing from a value typical for the initial (1)B(2)<--(1)A(1) excitation responsible for the Hartley band [for example, beta=1.40+/-0.12 for the O(2) (a (1)Delta(g); J=18) fragment], to a much lower value beyond the thermodynamic threshold for the fragment's production (for example, beta=0.63+/-0.19 for the J=18 fragment following photolysis at 311 nm). This trend, similar to that observed when probing the atomic fragment in a previous set of experiments, [Horrocks et al., J. Chem. Phys. 125, 133313 (2006); Denzer et al., Phys. Chem. Chem. Phys. 16, 1954 (2006)] is consistent with the photodissociation of vibrationally excited ozone molecules beyond the threshold wavelengths and we estimate approximately 1/3 of this to be from excitation in the nu(3) asymmetric stretching mode. These observations are substantiated by the values of the beta(0) (2)(2,1) orientation moment measured, which for photolysis at 301 nm are negative, indicating that a bond opening mechanism provides the key torque for the departing O(2) fragment. The orientation moment becomes positive again for photolysis beyond threshold, however, as the increasing impulsive dissociation again begins to dominate the nature of the rotation of the departing molecular fragment. In addition, a (2+2) REMPI scheme has been utilized to probe the O(2) (a (1)Delta(g)) "low" J fragments, where the majority of the population resides following photolysis within this region. The REMPI-TOFMS technique has been used to confirm the rotational character of a spectral feature through examination of the signal line shapes obtained using different experimental geometries. The dynamical information subsequently obtained, probing the "low" J O(2) (a (1)Delta(g)) fragments on these rotational transitions, has unified previous translational anisotropy results obtained by detecting the O ((1)D(2)) atomic fragment with data for the O(2) (a (1)Delta(g); J=16-20) fragments.

5.
J Chem Phys ; 125(13): 133308, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029461

ABSTRACT

Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(1D2) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe transitions has enabled a comprehensive characterization of the angular momentum polarization of the O(1D2) photofragments, in addition to providing high-resolution information about their speed and angular distributions. Images obtained at the probe laser wavelength of around 205 nm indicate dissociation primarily via the Hartley band, involving absorption to, and diabatic dissociation on, the B 1B2(3 1A1) potential energy surface. Rather different O(1D2) speed and electronic angular momentum spatial distributions are observed at 193 nm, suggesting that the dominant excitation at these photon energies is to a state of different symmetry from that giving rise to the Hartley band and also indicating the participation of at least one other state in the dissociation process. Evidence for a contribution from absorption into the tail of the Hartley band at 193 nm is also presented. A particularly surprising result is the observation of nonzero, albeit small values for all three rank K = 1 orientation moments of the angular momentum distribution. The polarization results obtained at 193 and 205 nm, together with those observed previously at longer wavelengths, are interpreted using an analysis of the long range quadrupole-quadrupole interaction between the O(1D2) and O2(1Deltag) species.

6.
J Chem Phys ; 125(13): 133313, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029466

ABSTRACT

The speed averaged translational anisotropy and electronic angular momentum polarization of the O(1D2) atomic fragment formed from the photodissociation of ozone in the atmospherically important long wavelength region of the Hartley band (298 to 320 nm) have been measured using resonance enhanced multiphoton ionization time of flight mass spectrometry. The translational anisotropy parameter, beta, is found to decline from 1.1 for photolysis at 300 nm to a minimum value of 0 at 310 nm which is the threshold for production of O(1D2) in conjunction with the O2(a 1Deltag v = 0) molecular cofragment. For photolysis wavelengths greater than 310 nm, O(1D2) is formed from the dissociation of internally excited ozone molecules. The corresponding beta parameters are markedly lower than for atomic fragments produced with the same speed from the photolysis of ground state ozone molecules. This result is consistent with two different pathways contributing to the photolysis of internally excited ozone at the longest wavelengths studied corresponding to initial internal excitation either in the symmetric or asymmetric stretching vibration. In addition, the polarization of the atomic angular momentum has been determined with the incoherent polarization parameters a0(2)(||) and a0(2)(_|) increasing from values of -0.53 and -0.62 at 300 nm to -0.37 and -0.19 at 317 nm, consistent with the increasing contribution from the photolysis of internally excited ozone as the dissociation wavelength lengthens. Evaluation of these alignment parameters allows the populations of the magnetic substrates, mj, to be determined. For example, for a photolysis wavelength of 303 nm the populations of mj = 0, +/- 1, +/- 2 are in the ratio of 0.36: 0.56: 0.08 and this ratio is essentially independent of the photolysis wavelength. The coherent contribution to the atomic polarization is quantified by the Re{a1(2)(||, _|)} and Im{a1(1)(||, _|)} parameters and these are found to vary from -0.21 and 0.21 at 300 nm to -0.04 and 0.24 at 313 nm, respectively.

7.
Phys Chem Chem Phys ; 8(16): 1954-62, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16633683

ABSTRACT

The translational anisotropy and the polarization of the electronic angular momentum of the O ((1)D2) fragment produced from the 298 nm photodissociation of ozone have been determined using resonance enhanced multiphoton ionization (REMPI) in conjunction with time-of-flight mass spectrometry (TOFMS). The translational anisotropy parameter beta, which is necessarily averaged over the O2 co-fragment rotational distribution, is measured to be 1.08 +/- 0.04. This is consistent with that expected for the (1)B2 <-- (1)A1 transition within an impulsive model if the tangential velocity associated with the zero point motion of the bend is constricted to opening the bond angle. Molecular frame polarization parameters of rank up to k = 4 have been extracted for the O ((1)D2) fragment and the calculated m(J) populations show a strong preference for the absolute value(m(J)) = 1 states. A small coherence term is also observed, a manifestation of the nuclear geometry of the dissociating molecule and the existence of possible non-adiabatic processes in the exit channel. The orientation associated with the mapping of the photon helicity onto the O ((1)D2) electronic angular momentum distribution was observed to have been quenched. However, the parameter gamma1', which describes the contribution to the orientation from a coherent superposition of a parallel and perpendicular excitation where the photofragment angular momentum lies perpendicular to both the recoil velocity and to the transition dipole moment, was determined to be -0.06.


Subject(s)
Deuterium Oxide/chemistry , Oxygen/chemistry , Ozone/chemistry , Photolysis , Anisotropy , Mathematical Computing , Photochemistry , Spectrometry, Mass, Electrospray Ionization/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...