Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(27): eabb2752, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32656340

ABSTRACT

When a medium is rapidly heated and cooled, heat transfers to its surroundings as sound. A controllable source of this sound is realized through joule heating of thin, conductive films by an alternating current. Here, we show that arrays of these sources generate sound unique to this mechanism. From the sound alone, we spatially resolve current flow by varying the film geometry and electrical phase. Confinement concentrates heat to such a degree that the film properties become largely irrelevant. Electrical coupling between sources creates its own distinctive sound that depends on the current flow direction, making it unusually sensitive to the interactions of multiple currents sharing the same space. By controlling the flow, a full phased array can be created from just a single film.

2.
Cancers (Basel) ; 11(3)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30845739

ABSTRACT

Overexpression and secretion of the enzymes cathepsin D (CathD) and cathepsin L (CathL) is associated with metastasis in several human cancers. As a superfamily, extracellularly, these proteins may act within the tumor microenvironment to drive cancer progression, proliferation, invasion and metastasis. Therefore, it is important to discover novel therapeutic treatment strategies to target CathD and CathL and potentially impede metastasis. Graphene oxide (GO) could form the basis of such a strategy by acting as an adsorbent for pro-metastatic enzymes. Here, we have conducted research into the potential of targeted anti-metastatic therapy using GO to adsorb these pro-tumorigenic enzymes. Binding of CathD/L to GO revealed that CathD/L were adsorbed onto the surface of GO through its cationic and hydrophilic residues. This work could provide a roadmap for the rational integration of CathD/L-targeting agents into clinical settings.

3.
Interface Focus ; 8(3): 20170054, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29696086

ABSTRACT

Biomolecular fractions affect the fate and behaviour of quantum dots (QDs) in living systems but how the interactions between biomolecules and QDs affect the bioavailability of QDs is a major knowledge gap in risk assessment analysis. The transport of QDs after release into a living organism is a complex process. The majority accumulate in the lungs where they can directly affect the inhalation process and lung architecture. Here, we investigate the bioavailability of graphene quantum dots (GQDs) to the lungs of rats by measuring the alterations in macromolecular fractions via Fourier transform infrared spectroscopy (FTIR). GQDs were intravenously injected into the rats in a dose-dependent manner (low (5 mg kg-1) and high (15 mg kg-1) doses of GQDs per body weight of rat) for 7 days. The lung tissues were isolated, processed and haematoxylin-eosin stained for histological analysis to identify cell death. Key biochemical differences were identified by spectral signatures: pronounced changes in cholesterol were found in two cases of low and high doses; a change in phosphorylation profile of substrate proteins in the tissues was observed in low dose at 24 h. This is the first time biomolecules have been measured in biological tissue using FTIR to investigate the biocompatibility of foreign material. We found that highly accurate toxicological changes can be investigated with FTIR measurements of tissue sections. As a result, FTIR could form the basis of a non-invasive pre-diagnostic tool for predicting the toxicity of GQDs.

4.
Int J Nanomedicine ; 13: 1525-1538, 2018.
Article in English | MEDLINE | ID: mdl-29588582

ABSTRACT

BACKGROUND: Protein-graphene interactions have the potential to play a pivotal role in the future directions of nanomedicine. These interactions lead to diverse processes such as generation of protein coronas, nano-bio interfaces, particle wrapping, and biocatalytic processes that could determine the ultimate fate of graphene nanocomposites in biologic systems. However, such interactions and their effects on the bioavailability of graphene have not yet been widely appreciated, despite the fact that this is the primary surface in contact with cells. METHODS: This paper reports on the integrative physiochemical interaction between trypsin and graphene quantum dots (GQDs) to determine their potential biologic identity in enzyme engineering. This interaction was measured by a wide range of analytical methods. RESULTS: Definitive binding and modulation of trypsin-GQDs was demonstrated for the first time by use of vibrational spectroscopy and wetting transparency, which revealed that trypsin was absorbed on GQDs' surface through its cationic and hydrophilic residues. Our findings suggested that trypsin's active sites were stabilized and protected by the GQDs, which were likely to be responsible for the high bioavailability of GQDs in enzymes. CONCLUSION: Our work demonstrates the efficacy of GQDs as an enzyme modulator with high specificity, and their great application potential in enzyme engineering as well as enzyme-based therapies.


Subject(s)
Quantum Dots/chemistry , Quantum Dots/metabolism , Trypsin/metabolism , Catalytic Domain , Graphite/chemistry , Hydrophobic and Hydrophilic Interactions , Luminescence , Nanocomposites/chemistry , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Trypsin/chemistry
5.
Sci Rep ; 8(1): 1817, 2018 01 29.
Article in English | MEDLINE | ID: mdl-29379045

ABSTRACT

The use of two-dimensional graphene-based materials in water treatment has recently gained significant attention due to their unique electronic and thermal mobility, high surface area, high mechanical strength, excellent corrosion resistance and tunable surface chemistry. However, the relatively expensive, poor hydrophobicity, low adsorption capacity and recyclability, and complex post-treatment of the most pristine graphene frameworks limit their practical application. Here, we report a facile scalable method to produce highly porous graphene from reduced graphene oxide via thermal treatment without addition of any catalyst or use of any template. Comparing to conventional graphene counterparts, as-prepared porous graphene nanosheets showed evident improvement in hydrophobicity, adsorption capacity, and recyclability, making them ideal candidate materials for water treatment. Superhydrophobic and superoleophilic porous graphene prepared in this work has been demonstrated as effective absorbents for a broad range of ions, oils and organic solvents, exhibiting high selectivity, good recyclability, and excellent absorption capacities > 90%. The synthesis method of porous graphene reported in this paper is easy to implement, low cost and scalable. These attributes could contribute towards efficient and cost-effective water purification and pollution reduction.

6.
Phys Chem Chem Phys ; 18(7): 5086-90, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26814138

ABSTRACT

Graphene oxide (GO) can be applied as a coating on metals, but few of these coatings have an adhesion suitable for practical applications. We demonstrate here how to form a GO coating on metals with a high adhesion (∼ 10.6 MPa) and tuneable surface, which can be further applied using similar/modified techniques for special applications (e.g. anti-corrosion and anti-biofouling).

7.
Nano Lett ; 8(7): 1995-9, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18543979

ABSTRACT

We have fabricated graphene devices with a top gate separated from the graphene layer by an air gap-a design which does not decrease the mobility of charge carriers under the gate. This gate is used to realize p-n-p structures where the conducting properties of chiral carriers are studied. The band profile of the structures is calculated taking into account the specifics of the graphene density of states and is used to find the resistance of the p-n junctions expected for chiral carriers. We show that ballistic p-n junctions have larger resistance than diffusive ones. This is caused by suppressed transmission of chiral carriers at angles away from the normal to the junction.

SELECTION OF CITATIONS
SEARCH DETAIL
...