Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 195: 215-220, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30625534

ABSTRACT

Since their addition to the polymer-architecture portfolio, gradient copolymers have attracted significant attention. Up to now, however, the existence of the intramolecular composition gradient must have been ascertained by sampling during living copolymerization because a reliable method for the detection of the composition gradient in the finalized copolymer had not been established yet. Here we show that MALDI-ToF mass spectrometry not only identifies imperfect, i.e. prematurely terminated copolymers but these copolymers can be used as "time capsules" which provide information on composition evolution and the intramolecular composition gradient.

2.
Beilstein J Org Chem ; 13: 2509-2520, 2017.
Article in English | MEDLINE | ID: mdl-29259661

ABSTRACT

Monosubstituted derivatives of γ-cyclodextrin (γ-CD) are suitable building blocks for supramolecular polymers, and can also serve as precursors for the synthesis of other regioselectively monosubstituted γ-CD derivatives. We prepared a set of monosubstituted 2I-O-, 3I-O-, and 6I-O-(3-(naphthalen-2-yl)prop-2-en-1-yl) derivatives of γ-CD using two different methods. A key step of the first synthetic procedure is a cross-metathesis between previously described regioisomers of mono-O-allyl derivatives of γ-CD and 2-vinylnaphthalene which gives yields of about 16-25% (2-5% starting from γ-CD). To increase the overall yields, we have developed another method, based on a direct alkylation of γ-CD with 3-(naphthalen-2-yl)allyl chloride as the alkylating reagent. Highly regioselective reaction conditions, which differ for each regioisomer in a used base, gave the monosubstituted isomers in yields between 12-19%. Supramolecular properties of these derivatives were studied by DLS, ITC, NMR, and Cryo-TEM.

3.
Biomacromolecules ; 18(8): 2478-2488, 2017 Aug 14.
Article in English | MEDLINE | ID: mdl-28636347

ABSTRACT

Alginate gels are an outstanding biomaterial widely applicable in tissue engineering, medicine, and pharmacy for cell transplantation, wound healing and efficient bioactive agent delivery, respectively. This contribution provides new and comprehensive insight into the atomic-resolution structure and dynamics of polyvalent ion-cross-linked alginate gels in microbead formulations. By applying various advanced solid-state NMR (ssNMR) spectroscopy techniques, we verified the homogeneous distribution of the cross-linking ions in the alginate gels and the high degree of ion exchange. We also established that the two-component character of the alginate gels arises from the concentration fluctuations of residual water molecules that are preferentially localized along polymer chains containing abundant mannuronic acid (M) residues. These hydrated M-rich blocks tend to self-aggregate into subnanometer domains. The resulting coexistence of two types of alginate chains differing in segmental dynamics was revealed by 1H-13C dipolar profile analysis, which indicated that the average fluctuation angles of the stiff and mobile alginate segments were about 5-9° or 30°, respectively. Next, the 13C CP/MAS NMR spectra indicated that the alginate polymer microstructure was strongly dependent on the type of cross-linking ion. The polymer chain regularity was determined to systematically decrease as the cross-linking ion radius decreased. Consistent with the 1H-1H correlation spectra, regular structures were found for the gels cross-linked by relatively large alkaline earth cations (Ba2+, Sr2+, or Ca2+), whereas the alginate chains cross-linked by bivalent transition metal ions (Zn2+) and trivalent metal cations (Al3+) exhibited significant irregularities. Notably, however, the observed disordering of the alginate chains was exclusively attributed to the M residues, whereas the structurally well-defined gels all contained guluronic acid (G) residues. Therefore, a key role of the units in M-rich blocks as mediators promoting the self-assembly of alginate chains was experimentally confirmed. Finally, combining 2D 27Al 3Q/MAS NMR spectroscopy with density functional theory (DFT) calculations provided previously unreported insight into the structure of the Al3+ cross-linking centers. Notably, even with a low residual amount of water, these cross-linking units adopt exclusively 6-fold octahedral coordination and exhibit significant motion, which considerably reduces quadrupolar coupling constants. Thus, the experimental strategy presented in this study provides a new perspective on cross-linked alginate structure and dynamics for which high-quality diffraction data at the atomic resolution level are inherently unavailable.


Subject(s)
Alginates/chemistry , Cross-Linking Reagents/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemistry , Glucuronic Acid/chemistry , Magnetic Resonance Spectroscopy
4.
Carbohydr Polym ; 98(1): 43-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23987315

ABSTRACT

Wheat B-starch was hydrolysed by α-amylase "Liquozyme supra" from Bacillus licheniformis at 90 °C and pH 7. After 2 h, the dextrose equivalent was 18; according to size exclusion chromatography, however, the hydrolysate contained not only dominant malto-oligosaccharides with the degree of polymerisation (DP)<10 but also more than 20% of components with DP higher than 40. The product was acetylated to a high degree as verified by FTIR and (1)H NMR (degree of substitution DS=3.1); nevertheless, detailed analysis of the MALDI-TOF mass spectra of the product showed that most of the malto-oligosaccharides molecules contained one or two residual hydroxyls. Size exclusion chromatography confirmed that the acetylated maltodextrin still contained a significant part with DP>40. This non-uniformity of acetylated maltodextrin, both with respect to DP and to DS, must be taken into account in the development of acetylated-maltodextrin applications such as use as plasticisers or compatibilisers in biodegradable composites.


Subject(s)
Polysaccharides/chemistry , Starch/chemistry , Triticum/chemistry , Acetylation , Hydrolysis , Kinetics , Molecular Weight
5.
Anal Chim Acta ; 693(1-2): 82-8, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21504814

ABSTRACT

MALDI-TOF mass spectrometry quantification is hampered by the poor reproducibility of the signal intensity and by molecular-mass and compositional discrimination. The addition of a suitable compound as an internal standard increases reproducibility and allows a calibration curve to be constructed. The concept was also verified with synthetic polymers but no instructions for practical implementation were given [H. Chen, M. He, J. Pei, H. He, Anal. Chem. 75 (2003) 6531-6535.], even though synthetic polymers are generally non-uniform with respect to molecular mass and composition and access to the polymer of the same molecular mass distribution and composition as that of the quantified one is thus the exception rather than rule. On the other hand, relative quantification of polymers e.g., the content of the precursor polymer in a batch of a modified polymer, is usually sought. In this particular case, the pure precursor is usually available and the modified polymer can serve as an internal standard. However, the calibration curve still cannot be constructed and the use of the internal standard has to be combined with the method of standard addition in which the precursor polymer is added directly to the analyzed sample. The experiments with simulated modified polymers, mixtures of poly(ethylene glycol) (PEG) and poly(ethylene glycol) monomethyl ether (MPEG) of similar molecular-mass distribution, revealed a power dependence of the PEG/MPEG signal-intensity ratio (MS ratio) on the PEG/MPEG concentrations ratio in the mixture (gravimetric ratio). The result was obtained using standard procedures and instrumentation, which means that the basic assumption of the standard-addition method, i.e., the proportionality of the MS and gravimetric ratios, generally cannot be taken for granted. Therefore, the multi-point combined internal-standard standard-addition method was developed and experimentally verified for the quantification of the precursor in modified polymers. In this method, the two parameters of the power-type calibration curve - the proportionality constant and the exponent-are assumed. If the exponent strongly deviates from unity the minority component can be significantly underrepresented in the spectrum. Therefore, the absence of the precursor polymer signals in the MALDI-TOF mass spectrum of a modified polymer sample does not prove the absence of the precursor in the sample. Such a conclusion has to be corroborated by the standard-addition method.

6.
Biomacromolecules ; 10(11): 3148-50, 2009 Nov 09.
Article in English | MEDLINE | ID: mdl-19817429

ABSTRACT

Plausible calf-thymus DNA molecular weight distribution can be obtained by size-exclusion chromatography with dual low-angle light scattering/refractometric detection at sufficiently low flow rate. The distribution extends over three decades of molecular weight and is characterized by weight average molecular weight M(w) = 8418000 and polydispersity index M(w)/M(n) = 5.2. After strongly scattering impurities had been removed from the sample using adsorption properties of the 3 mum mixed-cellulose-ester filter membranes, static light-scattering measurement in flow injection mode was feasible and gave M(w) = 8580000, corroborating the veracity of SEC results.


Subject(s)
Chromatography, Gel , DNA/analysis , DNA/chemistry , Light , Animals , Cattle , Chromatography, Gel/methods , Molecular Weight , Scattering, Radiation
7.
Anal Chem ; 79(4): 1639-45, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17297967

ABSTRACT

A general relationship is derived for the abundance of an imperfect dendrimer with a given number of missing constitutional repeating units in the two outmost layers. The relationship is used in the interpretation of the MALDI TOF mass spectrum of the second-generation carbosilane dendrimer prepared by the iterative divergent method. The model quantitatively describes the spectrum of the dendrimer and correctly predicts the MALDI TOF mass spectrum of its first-generation precursor. Thus, the use of well-resolved MALDI TOF mass spectra for assessing the purity of low-generation dendrimers with uniform end groups is substantiated for carbosilane dendrimers and to lesser extent for dendrimers in general.


Subject(s)
Dendrimers/analysis , Silanes/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Molecular Structure , Molecular Weight , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...