Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(5): e0303238, 2024.
Article in English | MEDLINE | ID: mdl-38709762

ABSTRACT

The Colorado potato beetle (CPB; Leptinotarsa decemlineata) is an important potato pest with known resistance to pyrethroids and organophosphates in Czechia. Decreased efficacy of neonicotinoids has been observed in last decade. After the restriction of using chlorpyrifos, thiacloprid and thiamethoxam by EU regulation, growers seek for information about the resistance of CPB to used insecticides and recommended antiresistant strategies. The development of CPB resistance to selected insecticides was evaluated in bioassays in 69 local populations from Czechia in 2017-2022 and in 2007-2022 in small plot experiments in Zabcice in South Moravia. The mortality in each subpopulation in the bioassays was evaluated at the field-recommended rates of insecticides to estimate the 50% and 90% lethal concentrations (LC50 and LC90, respectively). High levels of CPB resistance to lambda-cyhalothrin and chlorpyrifos were demonstrated throughout Czechia, without significant changes between years and regions. The average mortality after application of the field-recommended rate of lambda-cyhalothrin was influenced by temperature before larvae were sampled for bioassays and decreased with increasing temperature in June. Downwards trends in the LC90 values of chlorpyrifos and the average mortality after application of the field-recommended rate of acetamiprid in the bioassay were recorded over a 6-year period. The baseline LC50 value (with 95% confidence limit) of 0.04 mg/L of chlorantraniliprole was established for Czech populations of CPBs for the purpose of resistance monitoring in the next years. Widespread resistance to pyrethroids, organophosphates and neonicotinoids was demonstrated, and changes in anti-resistant strategies to control CPBs were discussed.


Subject(s)
Chlorpyrifos , Coleoptera , Insecticide Resistance , Insecticides , Neonicotinoids , Thiazines , Animals , Coleoptera/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Chlorpyrifos/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Larva/drug effects , Czech Republic , Thiamethoxam , Solanum tuberosum/parasitology
2.
Pest Manag Sci ; 80(5): 2342-2352, 2024 May.
Article in English | MEDLINE | ID: mdl-37402271

ABSTRACT

BACKGROUND: Failures in controlling Myzus persicae by pyrethroids and carbamates have been observed in Czechia since 2018. Eleven populations collected from Czech oilseed rape fields during 2018-2021 were tested for susceptibility to 11 insecticides. The presence of a single nucleotide polymorphism (SNP) leading to knockdown resistance in M. persicae populations was screened using allelic discriminating quantitative real-time polymerase chain reaction (qPCR). The presence of mutations related with the resistance of M. persicae to pyrethroids and carbamates was detected by sequencing paratype voltage-gated sodium channel and acetylcholinesterase 2 genes, respectively. RESULTS: Resistance to alpha-cypermethrin and pirimicarb was detected in most of the tested populations. The L1014F mutation was detected in 44.5% of M. persicae individuals surviving the field-recommended dose of alpha-cypermethrin. Sequencing of partial para gene for paratype voltage-gated sodium channel detected five different SNPs leading to four amino acid substitutions (kdr L1014F; s-kdr M918L; s-kdr M918T; and L932F). No pyrethroid-sensitive genotype was detected. The S431F amino acid substitution conferring resistance to carbamates was detected in 11 of 20 individuals with different pyrethroid-resistance genotypes. CONCLUSION: Resistance of M. persicae to both pyrethroids and carbamates was detected in nine of 11 populations. High resistance of M. persicae was correlated with mutations of the sodium channel. Sulfoxaflor, flonicamid, and spirotetramat are proposed as effective compounds to control pyrethroid- and carbamate-resistant populations of M. persicae. © 2023 Society of Chemical Industry.


Subject(s)
Aphids , Brassica napus , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Humans , Acetylcholinesterase/genetics , Czech Republic , Pyrethrins/pharmacology , Insecticides/pharmacology , Mutation , Carbamates/pharmacology , Voltage-Gated Sodium Channels/genetics , Insecticide Resistance/genetics
3.
Foods ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466205

ABSTRACT

The dynamics of 32 active substances contained in pesticide formulations (15 fungicides and 17 insecticides) were analyzed in iceberg lettuce, onion, leek, carrot, and parsley. Pesticide residues were monitored from the time of application until harvest. In total, 114 mathematical models of residue dissipation were developed using a first-order kinetic equation. Based on these models, it was possible to predict the action pre-harvest interval (the time between the last pesticide application and crop harvest) needed to attain a targeted action threshold (value significantly lower than the maximum limit) for low-residue vegetable production. In addition, it was possible to determine an action pre-harvest interval based on an action threshold of 0.01 mg kg-1 to produce vegetables intended for zero-residue production. The highest amount of pesticide residues were found in carrot and parsley leaves several days after treatment, and pesticide dissipation was generally slow. Lower amounts were found in leeks and lettuce, but pesticide dissipation was faster in lettuce. According to our findings, it seems feasible to apply reduced pesticide amounts to stay below unwanted residue levels. However, understanding the effectivity of reduced pesticide application for controlling relevant pest organisms requires further research.

4.
Article in English | MEDLINE | ID: mdl-28349738

ABSTRACT

Pesticide residues from the time of application until harvest were analysed for 20, 17 and 18 active insecticidal and fungicidal substances in Chinese cabbage, head cabbage and cauliflower, respectively. In total, 40 mathematical models of residue degradation were developed using a first-order kinetic equation, and from these models it was possible to forecast the action pre-harvest interval for a given action threshold for low-residue production in Brassica vegetables as a percentage of the maximum residue level. Additionally, it was possible to establish an action pre-harvest interval based on an action threshold of 0.01 mg kg‒1 for the production of Brassica vegetables for baby food. Among the evaluated commodities, the speed of residue degradation was highest in head cabbage, medium in Chinese cabbage and lowest in cauliflower. The half-lives of pesticide in various vegetables were also determined: they ranged from 1.55 to 5.25 days in Chinese cabbage, from 0.47 to 6.54 days in head cabbage and from 1.88 to 7.22 days in cauliflower.


Subject(s)
Brassica/chemistry , Food Contamination/analysis , Fungicides, Industrial/analysis , Pesticide Residues/analysis , China , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...