Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Med J Aust ; 215(6): 269-272, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34341997

ABSTRACT

OBJECTIVES: To estimate the annual burden of mortality and the associated health costs attributable to air pollution from wood heaters in Armidale. DESIGN: Health impact assessment (excess annual mortality and financial costs) based upon atmospheric PM2.5 measurements. SETTING: Armidale, a regional Australian city (population, 24 504) with high levels of air pollution in winter caused by domestic wood heaters, 1 May 2018 - 30 April 2019. MAIN OUTCOME MEASURES: Estimated population exposure to PM2.5 from wood heaters; estimated numbers of premature deaths and years of life lost. RESULTS: Fourteen premature deaths (95% CI, 12-17 deaths) per year, corresponding to 210 (95% CI, 172-249) years of life lost, are attributable to long term exposure to wood heater PM2.5 pollution in Armidale. The estimated financial cost is $32.8 million (95% CI, $27.0-38.5 million), or $10 930 (95% CI, $9004-12 822) per wood heater per year. CONCLUSIONS: The substantial mortality and financial cost attributable to wood heating in Armidale indicates that effective policies are needed to reduce wood heater pollution, including public education about the effects of wood smoke on health, subsidies that encourage residents to switch to less polluting home heating (perhaps as part of an economic recovery package), assistance for those affected by wood smoke from other people, and regulations that reduce wood heater use (eg, by not permitting new wood heaters and requiring existing units to be removed when houses are sold).


Subject(s)
Environmental Pollution/economics , Health Impact Assessment/economics , Heating/adverse effects , Mortality, Premature/trends , Wood/chemistry , Adult , Air Pollution/adverse effects , Air Pollution/analysis , Air Pollution/economics , Air Pollution/prevention & control , Australia/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Environmental Exposure/statistics & numerical data , Environmental Pollution/analysis , Environmental Pollution/prevention & control , Environmental Pollution/statistics & numerical data , Female , Health Care Costs/statistics & numerical data , Health Impact Assessment/statistics & numerical data , Heating/economics , Heating/legislation & jurisprudence , Heating/statistics & numerical data , Humans , Life Expectancy/trends , Male , Mortality/trends , Seasons , Smoke/adverse effects , Smoke/prevention & control
2.
Article in English | MEDLINE | ID: mdl-33396338

ABSTRACT

Ambient fine particulate matter <2.5 µm (PM2.5) air pollution increases premature mortality globally. Some PM2.5 is natural, but anthropogenic PM2.5 is comparatively avoidable. We determined the impact of long-term exposures to the anthropogenic PM component on mortality in Australia. PM2.5-attributable deaths were calculated for all Australian Statistical Area 2 (SA2; n = 2310) regions. All-cause death rates from Australian mortality and population databases were combined with annual anthropogenic PM2.5 exposures for the years 2006-2016. Relative risk estimates were derived from the literature. Population-weighted average PM2.5 concentrations were estimated in each SA2 using a satellite and land use regression model for Australia. PM2.5-attributable mortality was calculated using a health-impact assessment methodology with life tables and all-cause death rates. The changes in life expectancy (LE) from birth, years of life lost (YLL), and economic cost of lost life years were calculated using the 2019 value of a statistical life. Nationally, long-term population-weighted average total and anthropogenic PM2.5 concentrations were 6.5 µg/m3 (min 1.2-max 14.2) and 3.2 µg/m3 (min 0-max 9.5), respectively. Annually, anthropogenic PM2.5-pollution is associated with 2616 (95% confidence intervals 1712, 3455) deaths, corresponding to a 0.2-year (95% CI 0.14, 0.28) reduction in LE for children aged 0-4 years, 38,962 (95%CI 25,391, 51,669) YLL and an average annual economic burden of $6.2 billion (95%CI $4.0 billion, $8.1 billion). We conclude that the anthropogenic PM2.5-related costs of mortality in Australia are higher than community standards should allow, and reductions in emissions are recommended to achieve avoidable mortality.


Subject(s)
Air Pollution , Environmental Exposure , Mortality , Particulate Matter , Air Pollution/adverse effects , Air Pollution/analysis , Australia/epidemiology , Child , Child, Preschool , Environmental Exposure/adverse effects , Humans , Infant , Infant, Newborn , Life Expectancy , Particulate Matter/analysis , Particulate Matter/toxicity
3.
Environ Res ; 179(Pt A): 108777, 2019 12.
Article in English | MEDLINE | ID: mdl-31593836

ABSTRACT

BACKGROUND: Asthma-related outcomes are regularly used by studies to investigate the association between human exposure to landscape fire smoke and health. Robust summary effect estimates are required to inform health protection policy for fire smoke exposure. OBJECTIVE: To conduct a systematic review and meta-analysis to estimate the association between short-term exposure to landscape fire smoke (LFS) fine particulate matter (PM2.5) and asthma-related outcomes. METHODS: We conducted a systematic review and meta-analysis following PRISMA guidelines. Four databases (PubMed, Medline, EMBASE and Scopus) and reference lists of recent fire smoke and health reviews were searched. The Newcastle-Ottawa Scale was used to evaluate the quality of case-crossover studies, and a previously validated quality assessment framework was used for observational studies lacking control groups. Publication bias was assessed using funnel plots and Egger's Test. The trim and fill method was used when there was evidence of publication bias. Sensitivity and influence analyses were conducted on all endpoints to test the robustness of estimates. Summary estimates were obtained for hospitalisations and emergency department (ED) visits. A descriptive analysis was conducted for physician visits, medication use, and salbutamol dispensations. RESULTS: From an initial 181 articles (after duplicate removal), 20 studies were included for quantitative assessment and descriptive synthesis. LFS PM2.5 levels were positively associated with asthma hospitalisations (RR = 1.06, 95% CI: 1.02-1.09) and emergency department visits (RR = 1.07, 95% CI: 1.04-1.09). Subgroup analyses found that females were more susceptible than males for ED visits, and that there was an increasing association by age groups for hospital admissions and ED visits. High heterogeneity between studies was observed, but results were robust to sensitivity analysis. CONCLUSIONS: Females and all adults aged over 65 years appear to be the population groups most sensitive to asthma-related outcomes when exposed to LFS PM2.5. Overall, results were higher than those obtained for a typical PM2.5 mixture.


Subject(s)
Air Pollutants , Asthma/epidemiology , Fires , Inhalation Exposure/statistics & numerical data , Particulate Matter , Adult , Aged , Female , Humans , Male , Smoke
5.
Environ Sci Technol ; 51(21): 12473-12480, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28948787

ABSTRACT

Exposure to traffic related nitrogen dioxide (NO2) air pollution is associated with adverse health outcomes. Average pollutant concentrations for fixed monitoring sites are often used to estimate exposures for health studies, however these can be imprecise due to difficulty and cost of spatial modeling at the resolution of neighborhoods (e.g., a scale of tens of meters) rather than at a coarse scale (around several kilometers). The objective of this study was to derive improved estimates of neighborhood NO2 concentrations by blending measurements with modeled predictions in Sydney, Australia (a low pollution environment). We implemented the Bayesian maximum entropy approach to blend data with uncertainty defined using informative priors. We compiled NO2 data from fixed-site monitors, chemical transport models, and satellite-based land use regression models to estimate neighborhood annual average NO2. The spatial model produced a posterior probability density function of estimated annual average concentrations that spanned an order of magnitude from 3 to 35 ppb. Validation using independent data showed improvement, with root mean squared error improvement of 6% compared with the land use regression model and 16% over the chemical transport model. These estimates will be used in studies of health effects and should minimize misclassification bias.


Subject(s)
Air Pollutants , Nitrogen Dioxide , Air Pollution , Australia , Bayes Theorem , Environmental Exposure , Environmental Monitoring , Information Storage and Retrieval , Particulate Matter
6.
Faraday Discuss ; 204: 331-348, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28776616

ABSTRACT

Self-assembly of benzene-1,3,5-tricarboxylic acid (trimesic acid - TMA) monolayers at the alkanoic acid-graphite interface is revisited. Even though this archetypal model system for hydrogen bonded porous networks is particularly well studied, the analysis of routinely observed superperiodic contrast modulations known as moiré patterns lags significantly behind. Fundamental questions remain unanswered such as, are moiré periodicity and orientation always the same, i.e. is exclusively only one specific moiré pattern observed? What are the geometric relationships (superstructure matrices) between moiré, TMA, and graphite lattices? What affects the moiré pattern formation? Is there any influence from solvent, concentration, or thermal treatment? These basic questions are addressed via scanning tunneling microscopy experiments at the liquid-solid interface, revealing a variety of different moiré patterns. Interestingly, TMA and graphite lattices were always found to be ∼5° rotated with respect to each other. Consequently, the observed variation in the moiré patterns is attributed to minute deviations (<2°) from this preferred orientation. Quantitative analysis of moiré periods and orientations facilitates the determination of the TMA lattice parameter with picometer precision.

SELECTION OF CITATIONS
SEARCH DETAIL
...