Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(3): 866-872, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38205713

ABSTRACT

A critical bottleneck for the training of large neural networks (NNs) is communication with off-chip memory. A promising mitigation effort consists of integrating crossbar arrays of analogue memories in the Back-End-Of-Line, to store the NN parameters and efficiently perform the required synaptic operations. The "Tiki-Taka" algorithm was developed to facilitate NN training in the presence of device nonidealities. However, so far, a resistive switching device exhibiting all the fundamental Tiki-Taka requirements, which are many programmable states, a centered symmetry point, and low programming noise, was not yet demonstrated. Here, a complementary metal-oxide semiconductor (CMOS)-compatible resistive random access memory (RRAM), showing more than 30 programmable states with low noise and a symmetry point with only 5% skew from the center, is presented for the first time. These results enable generalization of Tiki-Taka training from small fully connected networks to larger long-/short-term-memory types of NN.

2.
Opt Express ; 23(4): 4736-50, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836510

ABSTRACT

To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

3.
Opt Express ; 21(10): 11652-8, 2013 May 20.
Article in English | MEDLINE | ID: mdl-23736388

ABSTRACT

We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.


Subject(s)
Filtration/instrumentation , Photometry/instrumentation , Refractometry/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Surface Plasmon Resonance/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Light , Silicon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...