Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 9(10): 8499-508, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23523938

ABSTRACT

In previous investigations, a Mg-10Dy (wt.%) alloy with a good combination of corrosion resistance and cytocompatibility showed great potential for use as a biodegradable implant material. However, the mechanical properties of Mg-10Dy alloy are not satisfactory. In order to allow the tailoring of mechanical properties required for various medical applications, four Mg-10(Dy+Gd)-0.2Zr (wt.%) alloys were investigated with respect to microstructure, mechanical and corrosion properties. With the increase in Gd content, the number of second-phase particles increased in the as-cast alloys, and the age-hardening response increased at 200°C. The yield strength increased, while the ductility reduced, especially for peak-aged alloys with the addition of Gd. Additionally, with increasing Gd content, the corrosion rate increased in the as-cast condition owing to the galvanic effect, but all the alloys had a similar corrosion rate (~0.5 mm year(-1)) in solution-treated and aged condition.


Subject(s)
Alloys/pharmacology , Materials Testing , Mechanical Phenomena/drug effects , Biocompatible Materials/pharmacology , Corrosion , Elements , Hardness , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Particle Size , X-Ray Diffraction
2.
Acta Biomater ; 9(10): 8740-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23429234

ABSTRACT

Standard cell culture tests according to ISO 10993 have only limited value for the biocompatibility screening of degradable biomaterials such as Mg alloys. The correlation between in vitro and in vivo results is poor. Standard cytotoxicity tests mimic the clinical situation to only a limited extent, since in vivo proteins and macromolecules in the blood and interstitial liquid will influence the corrosion behaviour and, hence, biocompatibility of Mg alloys to a significant extent. We therefore developed a modified cytotoxicity test simulating the in vivo conditions by use of bovine serum as the extraction vehicle instead of the cell culture medium routinely used in standard cytotoxicity testing according to ISO 10993-5. The modified extraction test was applied to eight experimental Mg alloys. Cytotoxicity was assayed by inhibition of cell metabolic activity (XTT test). When extraction of the alloy samples was performed in serum instead of cell culture medium the metabolic activity was significantly less inhibited for six of the eight alloys. The reduction in apparent cytotoxicity under serum extraction conditions was most pronounced for MgZn1 (109% relative metabolic activity with serum extracts vs. 26% in Dulbecco's modified Eagle's medium (DMEM)), for MgY4 (103% in serum vs. 32% in DMEM) and for MgAl3Zn1 (84% vs. 17%), resulting in a completely different cytotoxicity ranking of the tested materials when serum extraction was used. We suppose that this test system has the potential to enhance the predictability of in vivo corrosion behaviour and biocompatibility of Mg-based materials for biodegradable medical devices.


Subject(s)
Alloys/pharmacology , Biocompatible Materials/pharmacology , Magnesium/pharmacology , Materials Testing/methods , Animals , Bromodeoxyuridine/metabolism , Cattle , Fibroblasts/cytology , Fibroblasts/drug effects , Mice
3.
Acta Biomater ; 6(5): 1714-25, 2010 May.
Article in English | MEDLINE | ID: mdl-19788945

ABSTRACT

Magnesium alloys have attracted increasing interest in the past years due to their potential as implant materials. This interest is based on the fact that magnesium and its alloys are degradable during their time of service in the human body. Moreover magnesium alloys offer a property profile that is very close or even similar to that of human bone. The chemical composition triggers the resulting microstructure and features of degradation. In addition, the entire manufacturing route has an influence on the morphology of the microstructure after processing. Therefore the composition and the manufacturing route have to be chosen carefully with regard to the requirements of an application. This paper discusses the influence of composition and heat treatments on the microstructure, mechanical properties and corrosion behaviour of cast Mg-Gd alloys. Recommendations are given for the design of future degradable magnesium based implant materials.


Subject(s)
Alloys/chemistry , Gadolinium/chemistry , Magnesium/chemistry , Materials Testing/methods , Prostheses and Implants , Corrosion , Guidelines as Topic , Humans , Mechanical Phenomena , Microscopy, Electron, Scanning , Particle Size , Phase Transition , Tensile Strength , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...