Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
J Glob Antimicrob Resist ; 22: 466-476, 2020 09.
Article in English | MEDLINE | ID: mdl-32417591

ABSTRACT

OBJECTIVE: Trypanosoma cruzi infection affects millions of people worldwide, and the drugs available for its treatment have limited efficacy. 1,8-Dioxooctahydroxanthenes and tetraketones are compounds with important biological applications. The aim of this study was to assess the trypanocidal and inflammatory activities of nine 1,8-dioxooctahydroxanthenes (1-9) and three tetraketones (10-12). METHODS AND RESULTS: By in vitro killing assay, three compounds were able to eliminate CL TdTomato expressing strain of T. cruzi, 9 (IC50=30.65µM), 10 (IC50=14.11µM), and 11 (IC50=26.43µM). However, only 9 was not toxic to Vero cells. Next, to evaluate the in vivo antitrypanosomal and immunological efficacy of 9, Swiss mice were infected with the Y and CL strains of T. cruzi and treated for 10 days with 50mg/kg of 9. This compound reduced the cardiac inflammatory infiltration in animals infected with both strains. Rank's ligand (RankL), CCL2, and interferon (IFN)-γ were measured in the cardiac tissue homogenate of the Y-strain-infected animals, and no interference of 9 was observed. However, compound 9 increased the RankL and interleukin (IL)-10 levels in CL-infected mice. No hepatic and renal toxicity was observed. CONCLUSION: Our findings showed that 1,8-dioxooctahydroxanthene has antiparasitic effect and ameliorates the cardiac inflammatory parameters related to T. cruzi infection.


Subject(s)
Chagas Disease , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chlorocebus aethiops , Mice , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Vero Cells
2.
Mem Inst Oswaldo Cruz ; 113(11): e180271, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30365644

ABSTRACT

BACKGROUND The infection led by Trypanosoma cruzi persists in mammalian tissues causing an inflammatory imbalance. Carvedilol (Cv), a non-selective beta blocker drug indicated to treat heart failure and antihypertensive has shown to promote antioxidant and immunomodulatory properties which might improve the inflammation induced by T. cruzi. OBJECTIVES Evaluate the role of Cv on the inflammatory response of C57BL/6 mice acutely infected with the Colombian strain of T. cruzi. METHODS Animals were infected with the Colombian strain of T. cruzi and treated with Cv (25 mg/kg/day), benznidazole (Bz) (100 mg/kg/day) or their combination. On the 28th day of infection and 23 days of treatment, the euthanasia occurred, and the heart preserved for histopathological, oxidative stress (SOD, catalase, TBARs, carbonylated proteins) and plasma (CCL2, CCL5, TNF, IL-10) analyses. Parasitaemia and survival were assessed along the infection. FINDINGS Cv decreased TBARs, but increased the mortality rate, the parasitaemia and the levels of CCL2, CCL5, catalase and the inflammatory infiltrate in the cardiac tissue. Bz led the reduction of the inflammatory infiltrate and circulating levels of oxidative stress and inflammatory mediators in the infected mice. MAIN CONCLUSIONS Our data suggest that Cv, in this experimental model using the Colombian strain of T. cruzi, caused damage to the host.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Carvedilol/pharmacology , Chagas Disease/drug therapy , Heart/drug effects , Nitroimidazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Acute Disease , Animals , Catalase/analysis , Chagas Disease/parasitology , Chagas Disease/pathology , Cytokines/blood , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Mice, Inbred C57BL , Myocardium/pathology , Oxidative Stress/drug effects , Parasitemia/parasitology , Protein Carbonylation/drug effects , Reference Values , Reproducibility of Results , Superoxide Dismutase/analysis , Thiobarbituric Acid Reactive Substances/analysis , Time Factors , Trypanosoma cruzi/isolation & purification
3.
Mem. Inst. Oswaldo Cruz ; 113(11): e180271, 2018. graf
Article in English | LILACS | ID: biblio-976226

ABSTRACT

BACKGROUND The infection led by Trypanosoma cruzi persists in mammalian tissues causing an inflammatory imbalance. Carvedilol (Cv), a non-selective beta blocker drug indicated to treat heart failure and antihypertensive has shown to promote antioxidant and immunomodulatory properties which might improve the inflammation induced by T. cruzi. OBJECTIVES Evaluate the role of Cv on the inflammatory response of C57BL/6 mice acutely infected with the Colombian strain of T. cruzi. METHODS Animals were infected with the Colombian strain of T. cruzi and treated with Cv (25 mg/kg/day), benznidazole (Bz) (100 mg/kg/day) or their combination. On the 28th day of infection and 23 days of treatment, the euthanasia occurred, and the heart preserved for histopathological, oxidative stress (SOD, catalase, TBARs, carbonylated proteins) and plasma (CCL2, CCL5, TNF, IL-10) analyses. Parasitaemia and survival were assessed along the infection. FINDINGS Cv decreased TBARs, but increased the mortality rate, the parasitaemia and the levels of CCL2, CCL5, catalase and the inflammatory infiltrate in the cardiac tissue. Bz led the reduction of the inflammatory infiltrate and circulating levels of oxidative stress and inflammatory mediators in the infected mice. MAIN CONCLUSIONS Our data suggest that Cv, in this experimental model using the Colombian strain of T. cruzi, caused damage to the host.


Subject(s)
Humans , Trypanosoma cruzi/pathogenicity , /therapeutic use , Chemokines , Heart Diseases
4.
Biomed Res Int ; 2017: 9205062, 2017.
Article in English | MEDLINE | ID: mdl-28377930

ABSTRACT

Trypanosoma cruzi causes a cardiac infection characterized by an inflammatory imbalance that could become the inciting factor of the illness. To this end, we evaluated the role of carvedilol, a beta-blocker with potential immunomodulatory properties, on the immune response in C57BL/6 mice infected with VL-10 strain of T. cruzi in the acute phase. Animals (n = 40) were grouped: (i) not infected, (ii) infected, (iii) infected + carvedilol, and (iv) not infected + carvedilol. We analyzed parameters related to parasitemia, plasma levels of TNF, IL-10, and CCL2, and cardiac histopathology after the administration of carvedilol for 30 days. We did not observe differences in the maximum peaks of parasitemia in the day of their detection among the groups. The plasma TNF was elevated at 60 days of infection in mice treated or not with carvedilol. However, we observed a decreased CCL2 level and increased IL-10 levels in those infected animals treated with carvedilol, which impacted the reduction of the inflammatory infiltration in cardiac tissue. For this experimental model, carvedilol therapy was not able to alter the levels of circulating parasites but modulates the pattern of CCL2 and IL-10 mediators when the VL10 strain of T. cruzi was used in C57BL6 mice.


Subject(s)
Chagas Disease/drug therapy , Heart/drug effects , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/complications , Chagas Disease/parasitology , Chagas Disease/physiopathology , Chemokine CCL2/metabolism , Disease Models, Animal , Heart/parasitology , Heart/physiopathology , Humans , Interleukin-10/metabolism , Mice , Mice, Inbred C57BL , Trypanosoma cruzi/pathogenicity
5.
Mediators Inflamm ; 2016: 3694714, 2016.
Article in English | MEDLINE | ID: mdl-27688600

ABSTRACT

Chemokines (CKs) and chemokine receptors (CKR) promote leukocyte recruitment into cardiac tissue infected by the Trypanosoma cruzi. This study investigated the long-term treatment with subantimicrobial doses of doxycycline (Dox) in association, or not, with benznidazole (Bz) on the expression of CK and CKR in cardiac tissue. Thirty mongrel dogs were infected, or not, with the Berenice-78 strain of T. cruzi and grouped according their treatments: (i) two months after infection, Dox (50 mg/kg) 2x/day for 12 months; (ii) nine months after infection, Bz (3,5 mg/kg) 2x/day for 60 days; (iii) Dox + Bz; and (iv) vehicle. After 14 months of infection, hearts were excised and processed for qPCR analysis of Th1 (CCL2, CCL3, CCL4, CCL5, CXCL9, and CXCL11), Th2 (CCL1, CCL17, CCL24, and CCL26), Th17 (CCL20) CKs, Th1 (CCR5, CCR6, and CXCR3), and Th2/Th17 (CCR3, CCR4, and CCR8) CKR, as well as IL-17. T. cruzi infection increases CCL1, CCL2, CCL4, CCL5, CCL17, CXCL10, and CCR5 expression in the heart. Dox, Bz, or Dox + Bz treatments cause a reversal of CK and CKR and reduce the expression of CCL20, IL-17, CCR6, and CXCR3. Our data reveal an immune modulatory effect of Dox with Bz, during the chronic phase of infection suggesting a promising therapy for cardiac protection.

6.
Am J Trop Med Hyg ; 93(5): 976-82, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26350447

ABSTRACT

The protozoan Trypanosoma cruzi triggers an inflammatory process in mammalian heart causing events such as fibrosis, changes in the architecture and functionality in this organ. Enalapril, an angiotensin II-converting enzyme inhibitor, is a drug prescribed to ameliorate this heart dysfunction, and appears to exert a potential role in immune system regulation. Our aim was to evaluate the chronic cardiac inflammatory parameters after therapeutic treatment with enalapril and benznidazole in C57BL/6 mice infected with the VL-10 strain of T. cruzi. After infection, animals were treated with oral doses of enalapril (25 mg/kg), benznidazole (100 mg/kg), or both during 30 days. Morphometric parameters and levels of chemokines (CCL2, CCL5), IL-10, creatine kinases (CKs), and C-reactive protein were evaluated in the heart and serum at the 120th day of infection. Enalapril alone or in combination with benznidazole did not change the number of circulating parasites, but reduced cardiac leukocyte recruitment and total collagen in the cardiac tissue. Interestingly, the combination therapy (enalapril/benznidazole) also reduced the levels of chemokines, CK and CK-MB, and C-reactive proteins in chronic phase. In conclusion, during the chronic experimental T. cruzi infection, the combination therapy using enalapril plus benznidazole potentiated their immunomodulatory effects, resulting in a low production of biomarkers of cardiac lesions.


Subject(s)
Chagas Cardiomyopathy/drug therapy , Enalapril/therapeutic use , Inflammation/drug therapy , Nitroimidazoles/therapeutic use , Trypanosoma cruzi , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Chagas Cardiomyopathy/parasitology , Enalapril/administration & dosage , Inflammation/etiology , Male , Mice , Mice, Inbred C57BL , Nitroimidazoles/administration & dosage , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...