Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 10(1): 5273, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754185

ABSTRACT

Leishmania RNA virus (LRV) is an important virulence factor associated with the development of mucocutaneous Leishmaniasis, a severe form of the disease. LRV-mediated disease exacerbation relies on TLR3 activation, but downstream mechanisms remain largely unexplored. Here, we combine human and mouse data to demonstrate that LRV triggers TLR3 and TRIF to induce type I IFN production, which induces autophagy. This process results in ATG5-mediated degradation of NLRP3 and ASC, thereby limiting NLRP3 inflammasome activation in macrophages. Consistent with the known restricting role of NLRP3 for Leishmania replication, the signaling pathway triggered by LRV results in increased parasite survival and disease progression. In support of this data, we find that lesions in patients infected with LRV+ Leishmania are associated with reduced inflammasome activation and the development of mucocutaneous disease. Our findings reveal the mechanisms triggered by LRV that contribute to the development of the debilitating mucocutaneous form of Leishmaniasis.


Subject(s)
Immunity, Innate/immunology , Inflammasomes/immunology , Leishmania/immunology , Leishmaniasis, Mucocutaneous/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , RNA Viruses/immunology , Toll-Like Receptor 3/immunology , Animals , Autophagy/immunology , Humans , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Leishmania/physiology , Leishmania/virology , Leishmaniasis, Mucocutaneous/parasitology , Leishmaniasis, Mucocutaneous/virology , Macrophages/immunology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , RNA Viruses/physiology , Signal Transduction/immunology , Toll-Like Receptor 3/metabolism
3.
Inflamm Res ; 67(5): 435-443, 2018 May.
Article in English | MEDLINE | ID: mdl-29450586

ABSTRACT

OBJECTIVE AND DESIGN: The objective of this study was to investigate the role of Nod1 in the recruitment of neutrophils into the infection site and in the establishment of the inflammatory response elicited by a clinical isolate strain of P. aeruginosa in vivo, while comparing it to the well-established role of MyD88 in this process. SUBJECTS: Wild-type, Nod1-/- and MyD88-/- mice, all with a C57Bl/6 background. METHODS: Mice were intranasally infected with Pseudomonas aeruginosa DZ605. Bronchoalveolar lavage and blood were harvested 6 or 20 h post-infection for evaluating bacterial load, chemokine levels and neutrophil migration. Survival post-infection was also observed. RESULTS: We show here that wild-type and Nod1-/- mice induce similar lung chemokine levels, neutrophil recruitment, and bacterial load, thus leading to equal survival rates upon P. aeruginosa pulmonary infection. Furthermore, we confirmed the essential role of MyD88-dependent signalling in recruiting neutrophils and controlling P. aeruginosa-induced pulmonary infection. CONCLUSION: The results suggest that in contrast to MyD88, under our experimental conditions, the absence of Nod1 does not impair the recruitment of neutrophils in response to P. aeruginosa DZ605.


Subject(s)
Myeloid Differentiation Factor 88/genetics , Nod1 Signaling Adaptor Protein/genetics , Pseudomonas Infections/genetics , Pseudomonas aeruginosa , Animals , Bacteremia/microbiology , Bronchoalveolar Lavage Fluid/microbiology , Chemokines/metabolism , Female , Genetic Predisposition to Disease , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Signal Transduction/genetics
4.
J Biol Chem ; 292(32): 13087-13096, 2017 08 11.
Article in English | MEDLINE | ID: mdl-28607148

ABSTRACT

Leishmaniasis is caused by protozoan parasites of the genus Leishmania In mammalians, these parasites survive and replicate in macrophages and parasite elimination by macrophages is critical for host resistance. Endosomal Toll-like receptors (TLRs) have been shown to be crucial for resistance to Leishmania major in vivo For example, mice in the resistant C57BL/6 genetic background that are triple-deficient for TLR3, -7, and -9 (Tlr3/7/9-/-) are highly susceptible to L. major infection. Tlr3/7/9-/- mice are as susceptible as mice deficient in MyD88 or UNC93B1, a chaperone required for appropriate localization of endosomal TLRs, but the mechanisms are unknown. Here we found that macrophages infected with L. major undergo autophagy, which effectively accounted for restriction of parasite replication. Signaling via endosomal TLRs was required for autophagy because macrophages deficient for TLR3, -7, and 9, UNC93B1, or MyD88 failed to undergo L. major-induced autophagy. We also confirmed that Myd88-/-, Tlr3/7/9-/-, and Unc93b1-/- cells were highly permissive to L. major replication. Accordingly, shRNA-mediated suppression of Atg5, an E3 ubiquitin ligase essential for autophagosome elongation, in macrophages impaired the restriction of L. major replication in C57BL/6, but did not affect parasite replication in Myd88-/- or Unc93b1-/- macrophages. Rapamycin treatment reduced inflammatory lesions formed in the ears of Leishmania-infected C57BL/6 and Tlr3/7/9-/- mice, indicating that autophagy operates downstream of TLR signaling and is relevant for disease development in vivo Collectively, our results indicate that autophagy contributes to macrophage resistance to L. major replication, and mechanistically explain the previously described endosomal TLR-mediated resistance to L. major infection.


Subject(s)
Autophagy , Endosomes/parasitology , Leishmania major/immunology , Macrophages/parasitology , Membrane Transport Proteins/metabolism , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 3/metabolism , Animals , Autophagy-Related Protein 5/antagonists & inhibitors , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Bone Marrow Cells/parasitology , Bone Marrow Cells/pathology , Cells, Cultured , Disease Resistance , Endosomes/immunology , Endosomes/metabolism , Endosomes/pathology , Female , Leishmania major/growth & development , Leishmania major/physiology , Leishmaniasis, Cutaneous/immunology , Leishmaniasis, Cutaneous/metabolism , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Cutaneous/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Transport Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , RNA Interference , Signal Transduction , Toll-Like Receptor 3/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
5.
PLoS One ; 8(2): e56347, 2013.
Article in English | MEDLINE | ID: mdl-23409175

ABSTRACT

The development of Chagas disease is determined by a complex interaction between the genetic traits of both the protozoan parasite, T. cruzi, and the infected host. This process is regulated by multiple genes that control different aspects of the host-parasite interaction. While determination of the relevant genes in humans is extremely difficult, it is feasible to use inbred mouse strains to determine the genes and loci responsible for host resistance to infection. In this study, we investigated the susceptibility of several inbred mouse strains to infection with the highly virulent Y strain of T. cruzi and found a considerable difference in susceptibility between A/J and C57BL/6 mice. We explored the differences between these two mouse strains and found that the A/J strain presented higher mortality, exacerbated and uncontrolled parasitemia and distinct histopathology in the target organs, which were associated with a higher parasite burden and more extensive tissue lesions. We then employed a genetic approach to assess the pattern of inheritance of the resistance phenotype in an F1 population and detected a strong parent-of-origin effect determining the susceptibility of the F1 male mice. This effect is unlikely to result from imprinted genes because the inheritance of this susceptibility was affected by the direction of the parental crossing. Collectively, our genetic approach of using the F1 population suggests that genes contained in the murine chromosome X contribute to the natural resistance against T. cruzi infection. Future linkage studies may reveal the locus and genes participating on the host resistance process reported herein.


Subject(s)
Chagas Disease/genetics , Hybridization, Genetic , Trypanosoma cruzi/physiology , Animals , Disease Susceptibility , Female , Genetic Loci/genetics , Male , Mice , Phenotype , Sex Characteristics , Species Specificity , X Chromosome/genetics
6.
PLoS Negl Trop Dis ; 6(4): e1598, 2012.
Article in English | MEDLINE | ID: mdl-22509418

ABSTRACT

BACKGROUND: T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection. METHODOLOGY/PRINCIPAL FINDINGS: Our in vitro studies demonstrated the first evidence that IFN-γ would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-α, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-γ we found that the latter is crucial for controlling infection by G strain amastigotes. CONCLUSIONS/SIGNIFICANCE: Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-γ production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection.


Subject(s)
Chagas Disease/immunology , Interferon-gamma/immunology , Trypanosoma cruzi/immunology , Animals , Female , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Parasitemia/immunology , Parasitemia/prevention & control , Trypanosoma cruzi/pathogenicity
7.
J Immunol ; 187(12): 6447-55, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22079982

ABSTRACT

Although NLRC4/IPAF activation by flagellin has been extensively investigated, the downstream signaling pathways and the mechanisms responsible for infection clearance remain unclear. In this study, we used mice deficient for the inflammasome components in addition to wild-type (WT) Legionella pneumophila or bacteria deficient for flagellin (flaA) or motility (fliI) to assess the pathways responsible for NLRC4-dependent growth restriction in vivo and ex vivo. By comparing infections with WT L. pneumophila, fliI, and flaA, we found that flagellin and motility are important for the colonization of the protozoan host Acanthamoeba castellanii. However, in macrophages and mammalian lungs, flagellin expression abrogated bacterial replication. The flagellin-mediated growth restriction was dependent on NLRC4, and although it was recently demonstrated that NLRC4 is able to recognize bacteria independent of flagellin, we found that the NLRC4-dependent restriction of L. pneumophila multiplication was fully dependent on flagellin. By examining infected caspase-1(-/-) mice and macrophages with flaA, fliI, and WT L. pneumophila, we could detect greater replication of flaA, which suggests that caspase-1 only partially accounted for flagellin-dependent growth restriction. Conversely, WT L. pneumophila multiplied better in macrophages and mice deficient for NLRC4 compared with that in macrophages and mice deficient for caspase-1, supporting the existence of a novel caspase-1-independent response downstream of NLRC4. This response operated early after macrophage infection and accounted for the restriction of bacterial replication within bacteria-containing vacuoles. Collectively, our data indicate that flagellin is required for NLRC4-dependent responses to L. pneumophila and that NLRC4 triggers caspase-1-dependent and -independent responses for bacterial growth restriction in macrophages and in vivo.


Subject(s)
Acanthamoeba castellanii/microbiology , Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Carrier Proteins/physiology , Flagella/immunology , Legionella pneumophila/growth & development , Legionella pneumophila/immunology , Macrophages/immunology , Macrophages/microbiology , Acanthamoeba castellanii/enzymology , Acanthamoeba castellanii/immunology , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Bacterial Load/immunology , Bacterial Proteins/genetics , Bone Marrow Cells/enzymology , Bone Marrow Cells/immunology , Bone Marrow Cells/microbiology , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/genetics , Carrier Proteins/genetics , Cell Line , Female , Flagella/enzymology , Flagella/genetics , Flagellin/biosynthesis , Flagellin/genetics , Inflammasomes/deficiency , Inflammasomes/genetics , Legionella pneumophila/genetics , Locomotion/immunology , Macrophages/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein , Proton-Translocating ATPases/genetics , Signal Transduction/genetics , Signal Transduction/immunology
8.
Eur J Immunol ; 41(12): 3627-31, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22002196

ABSTRACT

Nod2 belongs to the nucleotide-binding domain leucine-rich repeat family of proteins and senses bacterial cell wall components to initiate innate immune responses against various pathogens. Recently, it has been reported that T-cell-intrinsic expression of Nod2 promotes host defense against Toxoplasma gondii infection by inducing type 1 immunity. Here, we present results that demonstrate that Nod2 does not play a role in the defense against T. gondii infection. Nod2-deficient mice were fully capable of inducing Th1 immune responses and did not show enhanced susceptibility to infection. Upon TCR stimulation in vitro, Nod2-deficient CD4(+) T cells showed normal activation, IL-2 production, proliferation, and Th1/2 differentiation. Nod2 mRNA and protein were expressed in CD4(+) T and CD8(+) T cells at substantial levels. Therefore, Nod2, although expressed in CD4(+) T cells, does not have an intrinsic function in T-cell activation and differentiation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunity, Cellular/immunology , Nod2 Signaling Adaptor Protein/immunology , Toxoplasma/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Interleukin-2/immunology , Interleukin-2/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Toxoplasmosis/genetics , Toxoplasmosis/immunology , Toxoplasmosis/metabolism
9.
J Immunol ; 184(3): 1148-52, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20042586

ABSTRACT

An effective innate immune recognition of the intracellular protozoan parasite Trypanosoma cruzi is critical for host resistance against Chagas disease, a severe and chronic illness that affects millions of people in Latin America. In this study, we evaluated the participation of nucleotide-binding oligomerization domain (Nod)-like receptor proteins in host response to T. cruzi infection and found that Nod1-dependent, but not Nod2-dependent, responses are required for host resistance against infection. Bone marrow-derived macrophages from Nod1(-/-) mice showed an impaired induction of NF-kappaB-dependent products in response to infection and failed to restrict T. cruzi infection in presence of IFN-gamma. Despite normal cytokine production in the sera, Nod1(-/-) mice were highly susceptible to T. cruzi infection, in a similar manner to MyD88(-/-) and NO synthase 2(-/-) mice. These studies indicate that Nod1-dependent responses account for host resistance against T. cruzi infection by mechanisms independent of cytokine production.


Subject(s)
Chagas Disease/immunology , Immunity, Innate , Nod1 Signaling Adaptor Protein/physiology , Trypanosoma cruzi/immunology , Animals , Chagas Disease/genetics , Chagas Disease/metabolism , Genetic Predisposition to Disease , Immunity, Innate/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/physiology , Nod1 Signaling Adaptor Protein/deficiency , Nod1 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptors/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...