Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Histochem ; 60(3): 2623, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27734991

ABSTRACT

The spinal cord is involved in local, ascending and descending neural pathways. Few studies analyzed the distribution of neuromediators in the laminae of non-human primates along all segments. The present study described the classic neuromediators in the spinal cord of the non-human primate Sapajus spp. through histochemical and immunohistochemical methods. Nicotinamide adenine dinucleotide hydrogen phosphate-diaphorase (NADPH-d) method showed neuronal somata in the intermediolateral column (IML), central cervical nucleus (CCN), laminae I, II, III, IV, V, VI, VII, VIII and X, besides dense presence of nerve fibers in laminae II and IX. Acetylcholinesterase (AChE) activity was evident in the neuronal somata in laminae V, VI, VII, VIII, IX, CCN, IML and in the Clarke's column (CC). Immunohistochemistry data revealed neuronal nitric oxide synthase (nNOS) immunoreactivity  in neuronal somata and in fibers of laminae I, II, III, VII, VIII, X and IML; choline acetyltransferase (ChAT) in neuronal somata and in fibers of laminae VII, VIII and IX; calcitonin gene-related peptide (CGRP) was noticed in neuronal somata of lamina IX and in nerve fibers of laminae I, II, III, IV, V, VI and VII; substance P (SP) in nerve fibers of laminae I, II, III, IV, V, VI, VII, VIII, IX, X, CCN, CC and IML; serotonin (5-HT) and vesicular glutamate transporter-1 (VGLUT1) was noticed in nerve fibers of all laminae;  somatostatin (SOM) in neuronal somata of laminae III, IV, V, VI, VII, VIII and IX and nerve fibers in laminae I, II, V, VI, VII, X and IML; calbindin (Cb) in neuronal somata of laminae I, II, VI, VII, IX and X; parvalbumin (PV) was found in neuronal somata and in nerve fibers of laminae III, IV, V, VI, VII, VIII, IX and CC; finally, gamma-amino butyric acid (GABA) was present in neuronal somata of laminae V, VI, VII, VIII, IX and X. This study revealed interesting results concerning the chemoarchitecture of the Sapajus spp. spinal cord with a distribution pattern mostly similar to other mammals. The data corroborate the result described in literature, except for some differences in CGRP, SP, Cb, PV and GABA immunoreactivities present in neuronal somata and in nerve fibers. This could suggest certain specificity for the neurochemistry distribution in this non-human primate species, besides adding relevant data to support further studies related to processes involving spinal cord components.


Subject(s)
Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Spinal Cord/cytology , Spinal Cord/metabolism , Animals , Cebinae , Humans
2.
Somatosens Mot Res ; 29(2): 45-51, 2012.
Article in English | MEDLINE | ID: mdl-22500566

ABSTRACT

The ultrastructural characteristics and the morphometric evaluation of the different types of neurons present in the dorsal root ganglia (DRG) of the South American opossum (Didelphis albiventris) were studied. Four adult male animals were used and the neurons from cervical and lumbar DRG were removed and processed for histological and transmission electron microscopy observations. The morphometric data were obtained from serial sections stained by H/E and Masson's trichrome. The number of neurons in cervical and lumbar DRG was 22 300 and 31 000, respectively. About 68% of the cervical neurons and 62.5% of the lumbar neurons presented areas up to 1300 µm(2) and were considered as the small neurons of the DRG. The ultrastructural observations revealed two morphological types of neurons: clear large neurons and dark small neurons. The nuclei of both cell types are spherical and the chromatin is disperse and rarefected. The cytoplasm of the dark small neuron is more electron dense and shows a regular distribution of small mitochondria and many rough reticulum cisterns in the periphery. A small Golgi apparatus was close to the nucleus and many disperse neurofilaments occupy most parts of the cytoplasm. Smooth reticulum cisterns are rare and lipofucsin-like inclusions are present at some points. In the clear large neurons, the organelles are homogenously scattered through the cytoplasm. The neurofilaments are close packed forming bundles and small mitochondria and rough reticulum cisterns are disperse. Lipofucsin-like inclusions are more frequent in these cells.


Subject(s)
Axons/ultrastructure , Ganglia, Spinal/ultrastructure , Neurons/ultrastructure , Opossums/anatomy & histology , Animals , Cervical Vertebrae , Ganglia, Spinal/cytology , Lumbar Vertebrae , Male , Neurons/cytology
3.
Neuroscience ; 154(1): 51-64, 2008 Jun 12.
Article in English | MEDLINE | ID: mdl-18384963

ABSTRACT

Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha1 subunit (GlyRalpha1), GABAA, GABAB, and subunits of alpha2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyRalpha1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of noradrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR.


Subject(s)
Auditory Pathways/metabolism , Cochlear Nucleus/metabolism , Neurochemistry , 3,3'-Diaminobenzidine/metabolism , Animals , Cochlear Nucleus/cytology , Dendrites/metabolism , Gene Expression/physiology , Neurons/cytology , Neurons/metabolism , Rats , Rats, Wistar , Receptors, Adrenergic/metabolism , Receptors, GABA/classification , Receptors, GABA/metabolism , Receptors, Glutamate/classification , Receptors, Glutamate/metabolism , Receptors, Glycine/genetics , Receptors, Glycine/metabolism , Receptors, Muscarinic/classification , Receptors, Muscarinic/metabolism , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism , Vesicular Inhibitory Amino Acid Transport Proteins/genetics , Vesicular Inhibitory Amino Acid Transport Proteins/metabolism
4.
J Anat ; 204(Pt 3): 175-90, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15032907

ABSTRACT

The architecture and musculotopic organization of the facial motor nucleus in the Cebus apella monkey (a New World primate) were investigated using histological techniques and a multiple labelling strategy, in which horseradish peroxidase-conjugated neuroanatomical tracers (CTB-HRP and WGA-HRP) and fluorescent tracers were injected into individual facial muscles. The facial motor nucleus was formed by multipolar motoneurons and had an ovoid shape, with its rostrocaudal axis measuring on average 1875 micro m. We divided the nucleus into four different subnuclei: medial, intermediate, dorsal and lateral. Retrograde labelling patterns revealed that individual muscles were innervated by longitudinal functional columns of motoneurons. The columns of the orbicularis oculi, zygomaticus, orbicularis oris, auricularis superior, buccinator and platysma muscles were located in the dorsal, intermediate, lateral, medial, lateral and intermediate subnuclei, respectively. However, the motoneuron columns of the levator labii superioris alaeque nasi muscle and frontalis muscle could not be associated with a specific subnucleus. The present results confirm previous studies regarding the musculotopic organization of the facial motor nucleus. However, we observed some particularities in terms of the relative size of each column in C. apella, which might be related to the functional and behavioral importance of each muscle in the particular context of this primate.


Subject(s)
Cebus/anatomy & histology , Facial Muscles/innervation , Motor Neurons/ultrastructure , Animals , Male , Neuroanatomy/methods , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...