Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters










Publication year range
1.
Plant Direct ; 6(8): e441, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36035897

ABSTRACT

Disposing efficiently and safely chlorophyll derivatives during senescence requires a coordinated pathway that is well conserved throughout green plants. The PAO/phyllobilin pathway catalyzes the degradation of the chlorophyll during senescence and allows detoxification of the pigment and its subsequent export from the chloroplast. Although most of the chloroplastic reactions involved in chlorophyll degradation are well understood, the diversity of enzymes responsible for downstream modifications of non-phototoxic phyllobilins remains to be explored. More than 40 phyllobilins have been described to date, but only three enzymes catalyzing side-chain reactions have been identified in Arabidopsis thaliana, namely, TIC55, CYP89A9, and MES16. Here, by generating a triple mutant, we evaluate the extent to which these enzymes are influencing the rate and amplitude of chlorophyll degradation at the metabolite as well as its regulation at the transcriptome level. Our data show that major side-chain modifications of phyllobilins do not influence significantly chlorophyll degradation or leaf senescence, letting the physiological relevance of their striking diversity an open question.

3.
Plant Physiol ; 182(2): 776-791, 2020 02.
Article in English | MEDLINE | ID: mdl-31753845

ABSTRACT

Chlorophyll degradation is one of the most visible signs of leaf senescence. During senescence, chlorophyll is degraded in the multistep pheophorbide a oxygenase (PAO)/phyllobilin pathway. This pathway is tightly regulated at the transcriptional level, allowing coordinated and efficient remobilization of nitrogen toward sink organs. Using a combination of transcriptome and metabolite analyses during dark-induced senescence of Arabidopsis (Arabidopsis thaliana) mutants deficient in key steps of the PAO/phyllobilin pathway, we show an unanticipated role for one of the pathway intermediates, i.e. pheophorbide a Both jasmonic acid-related gene expression and jasmonic acid precursors specifically accumulated in pao1, a mutant deficient in PAO. We propose that pheophorbide a, the last intact porphyrin intermediate of chlorophyll degradation and a unique pathway "bottleneck," has been recruited as a signaling molecule of chloroplast metabolic status. Our work challenges the assumption that chlorophyll breakdown is merely a result of senescence, and proposes that the flux of pheophorbide a through the pathway acts in a feed-forward loop that remodels the nuclear transcriptome and controls the pace of chlorophyll degradation in senescing leaves.


Subject(s)
Aging/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Leaves/metabolism , Aging/radiation effects , Amino Acid Motifs , Arabidopsis/enzymology , Arabidopsis/radiation effects , Chlorophyll/genetics , Chlorophyll/radiation effects , Chloroplasts/metabolism , Chloroplasts/radiation effects , Gene Expression Profiling , Gene Ontology , Genetic Association Studies , Genotype , Metabolome , Oxygenases/genetics , Phenotype , Plant Leaves/genetics , Plant Leaves/radiation effects , Signal Transduction/genetics , Signal Transduction/physiology
4.
Plant Sci ; 290: 110314, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31779896

ABSTRACT

Chlorophyllase (CLH), which catalyzes the release of the phytol chain from chlorophyll (Chl), has been long considered to catalyze the first step of Chl degradation. Arabidopsis contains two isoforms of CLH (CLH1 and CLH2), and CLH1 was previously demonstrated to be localized in tonoplast and endoplasmic reticulum, and not be involved in Chl degradation. In contrast, CLH2 possesses a predicted signal-peptide for chloroplast localization, and phylogenetic analysis of CLHs in Arabidopsis and other species also indicate that CLH2 forms a different clade than CLH1. Therefore, the possibility remains that CLH2 is involved in the breakdown of Chl. In the current study, clh mutants lacking CLH2 or both CLH isoforms were analyzed after the induction of senescence. Results indicated that the clh knockout lines were still able to degrade Chl at the same rate as wild-type plants. Transgenic Arabidopsis plants were generated that constitutively expressed either CLH2 or CLH2 fused to a yellow fluorescent protein (YFP). Observations made using confocal microscopy indicated that CLH2-YFP was located external to chloroplasts. Additionally, in overexpression plants, CLH2 was enriched in tonoplast and endoplasmic reticulum fractions following membrane fractionation. Based on the collective data, we conclude that CLH2 is not involved in Chl breakdown during senescence in Arabidopsis.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Carboxylic Ester Hydrolases/genetics , Chlorophyll/metabolism , Aging , Carboxylic Ester Hydrolases/metabolism , Chloroplasts/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
5.
Front Plant Sci ; 10: 1078, 2019.
Article in English | MEDLINE | ID: mdl-31611885

ABSTRACT

Tomato landraces, originated by adaptive responses to local habitats, are considered a valuable resource for many traits of agronomic interest, including fruit nutritional quality. Primary and secondary metabolites are essential determinants of fruit organoleptic quality, and some of them, such as carotenoids and phenolics, have been associated with beneficial proprieties for human health. Landraces' fruit taste and flavour are often preferred by consumers compared to the commercial varieties' ones. In an autumn-winter greenhouse hydroponic experiment, the response of three Southern-Italy tomato landraces (Ciettaicale, Linosa and Corleone) and one commercial cultivar (UC-82B) to different concentrations of sodium chloride (0 mM, 60 mM or 120 mM NaCl) were evaluated. At harvest, no losses in marketable yield were noticed in any of the tested genotypes. However, under salt stress, fresh fruit yield as well as fruit calcium concentration were higher affected in the commercial cultivar than in the landraces. Furthermore, UC-82B showed a trend of decreasing lycopene and total antioxidant capacity with increasing salt concentration, whereas no changes in these parameters were observed in the landraces under 60 mM NaCl. Landraces under 120 mM NaCl accumulated more fructose and glucose in the fruits, while salt did not affect hexoses levels in UC-82B. Ultra-performance liquid chromatography-tandem mass spectrometry analysis revealed differential accumulation of glycoalkaloids, phenolic acids, flavonoids and their derivatives in the fruits of all genotypes under stress. Overall, the investigated Italian landraces showed a different behaviour compared to the commercial variety UC-82B under moderate salinity stress, showing a tolerable compromise between yield and quality attributes. Our results point to the feasible use of tomato landraces as a target to select interesting genetic traits to improve fruit quality under stress conditions.

6.
Plant Mol Biol ; 101(3): 257-268, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31302867

ABSTRACT

KEY MESSAGE: The C-terminal cysteine-rich motif of NYE1/SGR1 affects chlorophyll degradation likely by mediating its self-interaction and conformational change, and somehow altering its Mg-dechelating activity in response to the changing redox potential. During green organ senescence in plants, the most prominent phenomenon is the degreening caused by net chlorophyll (Chl) loss. NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1) was recently reported to be able to dechelates magnesium (Mg) from Chl a to initiate its degradation, but little is known about the domain/motif basis of its functionality. In this study, we carried out a protein truncation assay and identified a conserved cysteine-rich motif (CRM, P-X3-C-X3-C-X-C2-F-P-X5-P) at its C terminus, which is essential for its function. Genetic analysis showed that all four cysteines in the CRM were irreplaceable, and enzymatic assays demonstrated that the mutation of each of the four cysteines affected its Mg-dechelating activity. The CRM plays a critical role in the conformational change and self-interaction of NYE1 via the formation of inter- and intra-molecular disulfide bonds. Our results may provide insight into how NYE1 responds to rapid redox changes during leaf senescence and in response to various environmental stresses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Chlorophyll/chemistry , Chloroplast Proteins/metabolism , Amino Acid Motifs , Chelating Agents/chemistry , DNA, Complementary/metabolism , Disulfides , Gene Expression Regulation, Plant , Magnesium/chemistry , Oxidation-Reduction , Phenotype , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Protein Conformation , Protein Domains , Stress, Physiological
7.
Photosynth Res ; 142(1): 69-85, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31172355

ABSTRACT

Chlorophyll (Chl) breakdown is a diagnostic visual process of leaf senescence, which furnishes phyllobilins (PBs) by the PAO/phyllobilin pathway. As Chl breakdown disables photosynthesis, it appears to have no role in photoactive green leaves. Here, colorless PBs were detected in green, non-senescent leaves of Arabidopsis thaliana. The PBs from the green leaves had structures entirely consistent with the PAO/phyllobilin pathway and the mutation of a single Chl catabolic enzyme completely abolished PBs with the particular modification. Hence, the PAO/phyllobilin pathway was active in the absence of visible senescence and expression of genes encoding Chl catabolic enzymes was observed in green Arabidopsis leaves. PBs accumulated to only sub-% amounts compared to the Chls present in the green leaves, excluding a substantial contribution of Chl breakdown from rapid Chl turnover associated with photosystem II repair. Indeed, Chl turnover was shown to involve a Chl a dephytylation and Chl a reconstitution cycle. However, non-recyclable pheophytin a is also liberated in the course of photosystem II repair, and is proposed here to be scavenged and degraded to the observed PBs. Hence, a cryptic form of the established pathway of Chl breakdown is indicated to play a constitutive role in photoactive leaves.


Subject(s)
Arabidopsis/metabolism , Chlorophyll/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cellular Senescence , Chromatography, High Pressure Liquid , Gene Expression Regulation, Plant , Photosynthesis , Plant Leaves/chemistry , Plant Leaves/metabolism
8.
J Exp Bot ; 70(8): 2313-2323, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30753668

ABSTRACT

The growth and development of organisms must be tightly controlled and adjusted to nutrient availability and metabolic activities. The Target of Rapamycin (TOR) network is a major control mechanism in eukaryotes and influences processes such as translation, mitochondrial activity, production of reactive oxygen species, and the cytoskeleton. In Arabidopsis thaliana, inhibition of the TOR kinase causes changes in cell wall architecture and suppression of phenotypic defects of the cell wall formation mutant lrx1 (leucine-rich repeat extensin 1). The rol17 (repressor of lrx1 17) mutant was identified as a new suppressor of lrx1 that induces also a short root phenotype. The ROL17 locus encodes isopropylmalate synthase 1, a protein involved in leucine biosynthesis. Dependent on growth conditions, mutations in ROL17 do not necessarily alter the level of leucine, but always cause development of the rol17 mutant phenotypes, suggesting that the mutation does not only influence leucine biosynthesis. Changes in the metabolome of rol17 mutants are also found in plants with inhibited TOR kinase activity. Furthermore, rol17 mutants show reduced sensitivity to the TOR kinase inhibitor AZD-8055, indicating a modified TOR network. Together, these data suggest that suppression of lrx1 by rol17 is the result of an alteration of the TOR network.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Glucosyltransferases/genetics , Phosphatidylinositol 3-Kinases , Arabidopsis Proteins/metabolism , Leucine/biosynthesis , Mutation , Organogenesis, Plant , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Plant Roots/metabolism , Signal Transduction
10.
J Biol Chem ; 293(48): 18667-18679, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30327425

ABSTRACT

Phospholipids (PLs) are emerging as important factors that initiate signal transduction cascades at the plasma membrane. Their distribution within biological membranes is tightly regulated, e.g. by ATP-binding cassette (ABC) transporters, which preferably translocate PLs from the cytoplasmic to the exoplasmic membrane leaflet and are therefore called PL-floppases. Here, we demonstrate that a plant ABC transporter, Lr34 from wheat (Triticum aestivum), is involved in plasma membrane remodeling characterized by an intracellular accumulation of phosphatidic acid and enhanced outward translocation of phosphatidylserine. In addition, the content of phosphatidylinositol 4,5-bisphosphate in the cytoplasmic leaflet of the plasma membrane was reduced in the presence of the ABC transporter. When heterologously expressed in Saccharomyces cerevisiae, Lr34 promoted oil body formation in a mutant defective in PL-transfer in the secretory pathway. Our results suggest that PL redistribution by Lr34 potentially affects the membrane-bound proteome and contributes to the previously reported stimuli-independent activation of biotic and abiotic stress responses and neutral lipid accumulation in transgenic Lr34-expressing barley plants.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Membrane Lipids/metabolism , Plant Proteins/metabolism , Triticum/metabolism , ATP-Binding Cassette Transporters/genetics , Biological Transport , Cell Membrane/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Phospholipids/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Nicotiana/genetics
11.
BMC Microbiol ; 18(1): 81, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30064359

ABSTRACT

Background In many works, the chemical composition of bacterially-produced elemental selenium nanoparticles (Se0-nanoparticles) was investigated using electron dispersive X-ray analysis. The results suggest that these particles should be associated with organic compounds. However, a complete analysis of their chemical composition is still missing. Aiming at identifying organic compounds associated with the Se0-nanoparticles produced by the purple phototrophic bacteria Rhodospirillum rubrum and Rhodobacter capsulatus (α group of the proteobacteria), we used MALDI-TOF spectrometry.Results This technic revealed that numerous signals obtained from particles produced by both species of bacteria were from metabolites of the photosynthetic system. Furthermore, not only bacteriochlorophyll a, bacteriopheophytin a, and bacteriopheophorbide a, which are known to accumulate in stationary phase cultures of these bacteria grown phototrophically in the absence of selenite, were identified. The particles were also associated with intermediary metabolites of the bacteriochlorophyll a biosynthesis pathway such as protoporphyrin IX, protoporphyrin IX monomethyl ester, bacteriochlorophyllide a and, most likely, Mg-protoporphyrin IX-monomethyl ester, as well as with oxidation products of the substrates of protochlorophyllide reductase and chlorin reductase.Conclusion Accumulation of intermediary metabolites of the bacteriochlorophyll biosynthesis pathway in these purple phototrophic bacteria was attributed to inhibition of oxygen-sensitive enzymes involved in this pathway. Consistent with this interpretation it has been reported that these bacteria reduce selenite intracellularly, that they contain high levels of glutathione and that the reduction of selenite with glutathione is a very fast reaction accompanied by the production of reactive oxygen species. As many enzymes involved in the biosynthesis of bacteriochlorophyll contain [Fe-S] clusters in their active site, which are known to be degraded in the presence of reactive oxygen species as well as in the presence of molecular oxygen, we concluded that the substrates of these enzymes accumulate in cells during selenite reduction.Association of metabolites of bacteriochlorophyll biosynthesis and degradation with the Se0-nanoparticles produced by Rhodospirillum rubrum and Rhodobacter capsulatus is proposed to result from coating of the nanoparticles with the intracytoplasmic membrane of these bacteria, where the photochemical apparatus is concentrated.


Subject(s)
Bacteriochlorophyll A/biosynthesis , Rhodobacter capsulatus/drug effects , Rhodospirillum rubrum/drug effects , Selenious Acid/toxicity , Bacteriochlorophyll A/metabolism , Metabolic Networks and Pathways/drug effects , Oxidation-Reduction , Oxidative Stress , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Rhodobacter capsulatus/growth & development , Rhodobacter capsulatus/metabolism , Rhodospirillum rubrum/growth & development , Rhodospirillum rubrum/metabolism , Selenious Acid/metabolism
12.
Planta ; 248(4): 875-892, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29951845

ABSTRACT

MAIN CONCLUSION: Although the PAO/phyllobilin pathway of chlorophyll breakdown is active in grass leaf senescence, the abundance of phyllobilins is far below the amount of degraded chlorophyll. The yellowing of fully developed leaves is the most prominent visual symptom of plant senescence. Thereby, chlorophyll is degraded via the so-called pheophorbide a oxygenase (PAO)/phyllobilin pathway to a species-specific set of phyllobilins, linear tetrapyrrolic products of chlorophyll breakdown. Here, we investigated the diversity and abundance of phyllobilins in cereal and forage crops, i.e. barley, rice, ryegrass, sorghum and wheat, using liquid chromatography-mass spectrometry. A total of thirteen phyllobilins were identified, among them four novel, not yet described ones, pointing to a rather high diversity of phyllobilin-modifying activities present in the Gramineae. Along with these phyllobilins, barley orthologs of known Arabidopsis thaliana chlorophyll catabolic enzymes were demonstrated to localize in the chloroplast, and two of them, i.e. PAO and pheophytin pheophorbide hydrolase, complemented respective Arabidopsis mutants. These data confirm functionality of the PAO/phyllobilin pathway in grasses. Interestingly, when comparing phyllobilin abundance with amounts of degraded chlorophyll in senescent leaves, in most analyzed grass species only minor fractions of chlorophyll were recovered as phyllobilins, opposite to A. thaliana where phyllobilin quantities match degraded chlorophyll rather well. These data show that, despite the presence and activity of the PAO/phyllobilin pathway in barley (and other cereals), phyllobilins do not accumulate stoichiometrically, implying possible degradation of chlorophyll beyond the phyllobilin level.


Subject(s)
Bile Pigments/metabolism , Chlorophyll/metabolism , Hordeum/enzymology , Metabolic Networks and Pathways , Oxygenases/metabolism , Poaceae/enzymology , Bile Pigments/chemistry , Chlorophyll/analogs & derivatives , Chlorophyll/chemistry , Genes, Reporter , Hordeum/chemistry , Hordeum/genetics , Mutation , Oxygenases/genetics , Plant Leaves/chemistry , Plant Leaves/enzymology , Plant Leaves/genetics , Poaceae/chemistry , Poaceae/genetics , Recombinant Fusion Proteins , Time Factors
13.
Plant Cell ; 30(8): 1745-1769, 2018 08.
Article in English | MEDLINE | ID: mdl-29934433

ABSTRACT

Malate dehydrogenases (MDHs) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid, and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function.


Subject(s)
Chloroplasts/metabolism , Malate Dehydrogenase/metabolism , Carotenoids/metabolism , Chloroplasts/genetics , Galactolipids/metabolism , Gene Silencing/physiology , Malate Dehydrogenase/genetics , Protochlorophyllide/metabolism
14.
Plant Physiol ; 177(3): 1319-1338, 2018 07.
Article in English | MEDLINE | ID: mdl-29789435

ABSTRACT

The desiccation-tolerant plant Haberlea rhodopensis can withstand months of darkness without any visible senescence. Here, we investigated the molecular mechanisms of this adaptation to prolonged (30 d) darkness and subsequent return to light. H. rhodopensis plants remained green and viable throughout the dark treatment. Transcriptomic analysis revealed that darkness regulated several transcription factor (TF) genes. Stress- and autophagy-related TFs such as ERF8, HSFA2b, RD26, TGA1, and WRKY33 were up-regulated, while chloroplast- and flowering-related TFs such as ATH1, COL2, COL4, RL1, and PTAC7 were repressed. PHYTOCHROME INTERACTING FACTOR4, a negative regulator of photomorphogenesis and promoter of senescence, also was down-regulated. In response to darkness, most of the photosynthesis- and photorespiratory-related genes were strongly down-regulated, while genes related to autophagy were up-regulated. This occurred concomitant with the induction of SUCROSE NON-FERMENTING1-RELATED PROTEIN KINASES (SnRK1) signaling pathway genes, which regulate responses to stress-induced starvation and autophagy. Most of the genes associated with chlorophyll catabolism, which are induced by darkness in dark-senescing species, were either unregulated (PHEOPHORBIDE A OXYGENASE, PAO; RED CHLOROPHYLL CATABOLITE REDUCTASE, RCCR) or repressed (STAY GREEN-LIKE, PHEOPHYTINASE, and NON-YELLOW COLORING1). Metabolite profiling revealed increases in the levels of many amino acids in darkness, suggesting increased protein degradation. In darkness, levels of the chloroplastic lipids digalactosyldiacylglycerol, monogalactosyldiacylglycerol, phosphatidylglycerol, and sulfoquinovosyldiacylglycerol decreased, while those of storage triacylglycerols increased, suggesting degradation of chloroplast membrane lipids and their conversion to triacylglycerols for use as energy and carbon sources. Collectively, these data show a coordinated response to darkness, including repression of photosynthetic, photorespiratory, flowering, and chlorophyll catabolic genes, induction of autophagy and SnRK1 pathways, and metabolic reconfigurations that enable survival under prolonged darkness.


Subject(s)
Lamiales/physiology , Lipid Metabolism/physiology , Metabolome/physiology , Plant Proteins/genetics , Autophagy , Darkness , Dehydration , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Photosynthesis/genetics , Plant Proteins/metabolism
15.
Methods Mol Biol ; 1744: 223-235, 2018.
Article in English | MEDLINE | ID: mdl-29392669

ABSTRACT

The most obvious event of leaf senescence is the loss of chlorophyll. Chlorophyll degradation proceeds in a well-characterized pathway that, although being common to higher plants, yields a species-specific set of chlorophyll catabolites, termed phyllobilins. Analysis of chlorophyll degradation and phyllobilin accumulation by high-performance liquid chromatography (HPLC) is a valuable tool to investigate senescence processes in plants. In this chapter, methods for the extraction, separation, and quantification of chlorophyll and its degradation products are described. Because of their different physicochemical properties, chlorin-type pigments (chlorophylls and magnesium-free pheo-pigments) and phyllobilins (linear tetrapyrroles) are analyzed separately. Specific spectral properties and polarity differences allow the identification of the different classes of known chlorins and phyllobilins. The methods provided facilitate the analysis of chlorophyll degradation and the identification of chlorophyll catabolites in a wide range of plant species, in different tissues, and under a variety of physiological conditions that involve loss of chlorophyll.


Subject(s)
Chlorophyll/analysis , Chlorophyll/metabolism , Chromatography, High Pressure Liquid , Plants/metabolism , Aging , Biomarkers , Chlorophyll/chemistry , Molecular Structure , Plant Leaves/metabolism
16.
J Exp Bot ; 69(4): 879-889, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29036670

ABSTRACT

During leaf senescence and fruit ripening, chlorophyll is degraded in a multistep pathway into linear tetrapyrroles called phyllobilins. A key feature of chlorophyll breakdown is the removal of the hydrophobic phytol chain that renders phyllobilins water soluble, an important prerequisite for their ultimate storage in the vacuole of senescent cells. Chlorophyllases had been considered for more than a century to catalyze dephytylation in vivo; however, this was recently refuted. Instead, pheophytinase was discovered as a genuine in vivo phytol hydrolase. While chlorophyllase acts rather unspecifically towards different porphyrin substrates, pheophytinase was shown to specifically dephytylate pheophytin, namely Mg-free chlorophyll. The aim of this work was to elucidate in detail the biochemical and structural properties of pheophytinase. By testing different porphyrin substrates with recombinant pheophytinase from Arabidopsis thaliana we show that pheophytinase has high specificity for the acid moiety of the ester bond, namely the porphyrin ring, while the nature of the alcohol, namely the phytol chain in pheophytin, is irrelevant. In silico modelling of the 3-dimensional structure of pheophytinase and subsequent analysis of site-directed pheophytinase mutant forms allowed the identification of the serine, histidine, and aspartic acid residues that compose the catalytic triad, a classical feature of serine-type hydrolases to which both pheophytinase and chlorophyllase belong. Based on substantial structural differences in the models of Arabidopsis pheophytinase and chlorophyllase 1, we discuss potential differences in the catalytic properties of these two phytol hydrolases.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Arabidopsis/genetics , Carboxylic Ester Hydrolases/chemistry , Chlorophyll/metabolism , Chloroplast Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biocatalysis , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Chloroplast Proteins/genetics , Chloroplast Proteins/metabolism , Gene Expression Regulation, Plant , Molecular Conformation
17.
J Exp Bot ; 69(4): 751-767, 2018 02 12.
Article in English | MEDLINE | ID: mdl-28992212

ABSTRACT

Chlorophyll breakdown is one of the most obvious signs of leaf senescence and fruit ripening. The resulting yellowing of leaves can be observed every autumn, and the color change of fruits indicates their ripening state. During these processes, chlorophyll is broken down in a multistep pathway, now termed the 'PAO/phyllobilin' pathway, acknowledging the core enzymatic breakdown step catalysed by pheophorbide a oxygenase, which determines the basic linear tetrapyrrole structure of the products of breakdown that are now called 'phyllobilins'. This review provides an update on the PAO/phyllobilin pathway, and focuses on recent biochemical and molecular progress in understanding phyllobilin-modifying reactions as the basis for phyllobilin diversity, on the evolutionary diversity of the pathway, and on the transcriptional regulation of the pathway genes.


Subject(s)
Chlorophyll/metabolism , Oxygenases/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Signal Transduction , Tetrapyrroles/metabolism
18.
Nat Plants ; 3(12): 937-945, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29180815

ABSTRACT

Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops 1-4 . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids 1 , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes 5,6 . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.


Subject(s)
Genes, Bacterial , Herbicide Resistance/genetics , Organophosphorus Compounds/pharmacology , Plants, Genetically Modified/drug effects , Acetyltransferases/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , Brassica napus/drug effects , Brassica napus/genetics , Crystallography, X-Ray , Metabolome , Models, Molecular , Plants, Genetically Modified/genetics , Glycine max/drug effects , Glycine max/genetics , Streptomyces/drug effects , Streptomyces/genetics , Triticum/drug effects , Triticum/genetics
19.
Bio Protoc ; 7(18): e2561, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-34541205

ABSTRACT

Hydroxylation of chlorophyll catabolites at the so-called C32 position ( Hauenstein et al., 2016 ) is commonly found in all plant species analyzed to date. Here we describe an in vitro hydroxylation assay using Capsicum annuum chromoplast membranes as a source of the hydroxylating activity, which converts the substrate epi-pFCC (epi-primary Fluorescent Chlorophyll Catabolite) ( Mühlecker et al., 2000 ) to epi-pFCC-OH.

20.
Plant Cell ; 28(10): 2510-2527, 2016 10.
Article in English | MEDLINE | ID: mdl-27655840

ABSTRACT

Chlorophyll degradation is the most obvious hallmark of leaf senescence. Phyllobilins, linear tetrapyrroles that are derived from opening of the chlorin macrocycle by the Rieske-type oxygenase PHEOPHORBIDE a OXYGENASE (PAO), are the end products of chlorophyll degradation. Phyllobilins carry defined modifications at several peripheral positions within the tetrapyrrole backbone. While most of these modifications are species-specific, hydroxylation at the C32 position is commonly found in all species analyzed to date. We demonstrate that this hydroxylation occurs in senescent chloroplasts of Arabidopsis thaliana. Using bell pepper (Capsicum annuum) chromoplasts, we establish that phyllobilin hydroxylation is catalyzed by a membrane-bound, molecular oxygen-dependent, and ferredoxin-dependent activity. As these features resemble the requirements of PAO, we considered membrane-bound Rieske-type oxygenases as potential candidates. Analysis of mutants of the two Arabidopsis Rieske-type oxygenases (besides PAO) uncovered that phyllobilin hydroxylation depends on TRANSLOCON AT THE INNER CHLOROPLAST ENVELOPE55 (TIC55). Our work demonstrates a catalytic activity for TIC55, which in the past has been considered as a redox sensor of protein import into plastids. Given the wide evolutionary distribution of both PAO and TIC55, we consider that chlorophyll degradation likely coevolved with land plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Aging/genetics , Aging/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chlorophyll/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...