Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 121(1): 37-47, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27596858

ABSTRACT

In the 1990s, the Tubifex tubifex aquatic oligochaete species complex was parsed into 6 separate lineages differing in susceptibility to Myxobolus cerebralis, the myxozoan parasite that can cause whirling disease (WD). Lineage III T. tubifex oligochaetes are highly susceptible to M. cerebralis infection. Lineage I, IV, V and VI oligochaetes are highly resistant or refractory to infection and may function as biological filters by deactivating M. cerebralis myxospores. We designed a 2-phased laboratory experiment using triactinomyxon (TAM) production as the response variable to test that hypothesis. A separate study conducted concurrently demonstrated that M. cerebralis myxospores held in sand and water at temperatures ≤15°C degrade rapidly, becoming almost completely non-viable after 180 d. Those results provided the baseline to assess deactivation of M. cerebralis myxospores by replicates of mixed lineage (I, III, V and VI) and refractory lineage (V and VI) oligochaetes. TAM production was zero among 7 of 8 Lineage V and Lineage VI T. tubifex oligochaete groups exposed to 12500 M. cerebralis myxospores for 15, 45, 90 and 135 d. Among 4 mixed lineage exposure groups, TAM production averaged 14641 compared with 2202495 among 12 groups of Lineage III oligochaetes. Among the 6 unexposed Lineage III experimental groups seeded into original Phase 1 substrates for the 45, 90 and 135 d treatments during the Phase 2 portion of the study, TAM production was reduced by 98.9, 99.9 and 99.9%, respectively, compared with the average for the 15 d exposure groups. These results are congruent with the hypothesis that Lineage V and Lineage VI T. tubifex oligochaetes can deactivate and destroy M. cerebralis myxospores.


Subject(s)
Myxobolus , Oligochaeta/physiology , Spores , Animals , Host-Parasite Interactions , Time Factors
2.
J Aquat Anim Health ; 27(1): 50-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26306333

ABSTRACT

While whirling disease was first observed in Rainbow Trout Oncorhynchus mykiss in 1893, the complete life cycle of Myxobolus cerebralis (Mc), the causative agent of the disease, was not understood until 1984, when it was shown to involve two obligate hosts, a salmonid fish and the aquatic oligochaete Tubifex tubifex (Tt). The viability of the triactinomyxon (TAM) actinospores produced by Tt has been well studied, and is known to be temperature dependent and measured in days and weeks. Assertions that Mc myxospores produced by infected fish remain viable for years or even decades were made during the mid-20th century, decades before the Mc life cycle was described. Moreover, the duration of myxospore viability has not been well studied since the life cycle was elucidated. In a series of time-delay treatments, we assessed the long-term viability of Mc myxospores by exposure to Mc-susceptible Tt oligochaetes and quantified TAM production. As the time delay between inoculation and incubation of Mc myxospores in sand and water and exposure to Tt oligochaetes increased, TAM production decreased exponentially. Production among the 15-d time-delay replicates was reduced 74.7% compared with the 0-d treatment. Likewise, total TAM production was reduced 94.5, 99.4, and 99.9%, respectively, in the 90-, 120-, and 180-d time-delay treatments. Linear regression analysis of our data and the absence of TAM production among replicates of Mc myxospores held at 5°C for 365 d prior to exposure to Mc-susceptible Tt oligochaetes indicate that the long-term viability of Mc myxospores is less than 1 year under the conditions of this study.


Subject(s)
Myxobolus/physiology , Oligochaeta/parasitology , Spores, Protozoan , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...