Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Article in English | MEDLINE | ID: mdl-30855669

ABSTRACT

Microbial communities within the soil of Laurentian Great Lakes coastal wetlands drive biogeochemical cycles and provide several other ecosystem services. However, there exists a lack of understanding of how microbial communities respond to nutrient gradients and human activity in these systems. This research sought to address the lack of understanding through exploration of relationships among nutrient gradients, microbial community diversity, and microbial networks. Significant differences in microbial community structure were found among coastal wetlands within the western basin of Lake Erie and all other wetlands studied (three regions within Saginaw Bay and one region in the Beaver Archipelago). These diversity differences coincided with higher nutrient levels within the Lake Erie region. Site-to-site variability also existed within the majority of the regions studied, suggesting site-scale heterogeneity may impact microbial community structure. Several subnetworks of microbial communities and individual community members were related to chemical gradients among wetland regions, revealing several candidate indicator communities and taxa that may be useful for Great Lakes coastal wetland management. This research provides an initial characterization of microbial communities among Great Lakes coastal wetlands and demonstrates that microbial communities could be negatively impacted by anthropogenic activities.


Subject(s)
Microbiota , Nutrients/analysis , Soil Microbiology , Soil/chemistry , Wetlands , Great Lakes Region , Human Activities , Humans , Microbial Consortia/genetics , Microbiota/genetics
2.
FEMS Microbiol Lett ; 365(24)2018 12 01.
Article in English | MEDLINE | ID: mdl-30445437

ABSTRACT

Oxygen (O2) concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g. denitrification), which are mediated by the residing microbial community. However, little is known about how resident microbial communities respond to diel physical and chemical fluxes in freshwater wetland ecosystems. In this study, total microbial (bacterial and archaeal) community structure was significantly related to diel time points in just one out of four distinct freshwater wetlands sampled. This suggests that daily environmental shifts may influence wetlands differentially based upon the resident microbial community and specific physical and chemical conditions of a freshwater wetland. When exploring the microbial communities within each wetland at finer resolutions, subcommunities of taxa within two wetlands were found to correspond to fluctuating O2 levels. Microbial taxa that were found to be susceptible to fluctuating O2 levels within these subnetworks may have intimate ties to metabolism and/or diel redox cycles. This study highlights that freshwater wetland microbial communities are often stable in community structure when confronted with short-term O2 fluxes; however, specialist taxa may be sensitive to these same fluxes.


Subject(s)
Archaea/metabolism , Bacteria/isolation & purification , Fresh Water/microbiology , Oxygen/metabolism , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Fresh Water/analysis , Microbiota , Oxygen/analysis , Phylogeny , Soil Microbiology , Wetlands
3.
PeerJ ; 6: e5468, 2018.
Article in English | MEDLINE | ID: mdl-30155365

ABSTRACT

The recreational bait trade is a potential pathway for pathogen introduction and spread when anglers dump bait shop sourced water into aquatic systems. Despite this possibility, and previous recognition of the importance of the bait trade in the spread of aquatic invasive species (AIS), to date there has been no region wide survey documenting pathogens in retail bait shops. In this study, we analyzed 96 environmental DNA samples from retail bait shops around the Great Lakes region to identify pathogens, targeting the V4 hypervariable region of the 16S rRNA gene. Additionally, we used samples from one site in Lake Michigan as a comparison to pathogen diversity and abundance in natural aquatic systems. Our results identified nine different groups of pathogens in the bait shop samples, including those that pose risks to both humans and fish species. Compared to wild sourced samples, the bait shops had higher relative abundance and greater taxonomic diversity. These findings suggest that the bait trade represents a potentially important pathway that could introduce and spread pathogens throughout the Great Lakes region. Improving pathogen screening and angler outreach should be used in combination to aid in preventing the future spread of high risk pathogens.

4.
PeerJ ; 5: e3937, 2017.
Article in English | MEDLINE | ID: mdl-29062609

ABSTRACT

Lakes are dynamic and complex ecosystems that can be influenced by physical, chemical, and biological processes. Additionally, individual lakes are often chemically and physically distinct, even within the same geographic region. Here we show that differences in physicochemical conditions among freshwater lakes located on (and around) the same island, as well as within the water column of each lake, are significantly related to aquatic microbial community diversity. Water samples were collected over time from the surface and bottom-water within four freshwater lakes located around Beaver Island, MI within the Laurentian Great Lakes region. Three of the sampled lakes experienced seasonal lake mixing events, impacting either O2, pH, temperature, or a combination of the three. Microbial community alpha and beta diversity were assessed and individual microbial taxa were identified via high-throughput sequencing of the 16S rRNA gene. Results demonstrated that physical and chemical variability (temperature, dissolved oxygen, and pH) were significantly related to divergence in the beta diversity of surface and bottom-water microbial communities. Despite its correlation to microbial community structure in unconstrained analyses, constrained analyses demonstrated that dissolved organic carbon (DOC) concentration was not strongly related to microbial community structure among or within lakes. Additionally, several taxa were correlated (either positively or negatively) to environmental variables, which could be related to aerobic and anaerobic metabolisms. This study highlights the measurable relationships between environmental conditions and microbial communities within freshwater temperate lakes around the same island.

SELECTION OF CITATIONS
SEARCH DETAIL
...