Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
J Anim Ecol ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741512

ABSTRACT

Climate change is altering the timing of seasonal events for many taxa. There is limited understanding of how northward/southward songbird migration follows or is limited by the latitudinal progression of seasonal transitions. Consistent environmental conditions that migrating birds encounter across latitudes likely represent or correlate with important resources or limiting factors for migration. We tested whether migratory passage-observed via radar-consistently tracked land surface variables and phenophases across latitudes in the US Central Flyway in both spring and fall. The daily temperatures, precipitation and vegetation greenness occurring on 10%, 50% and 90% cumulative passage dates changed substantially with latitude, indicating that most migrants experienced rapidly changing conditions as they headed north or south. Temperature did not limit the progression of migration in either season. Peak spring migration in the southern US occurred nearly 40 days after the spring green wave, the northward progression of vegetation growth, but nearly caught up to green-up at 48° N. Spring migration phenology may have evolved to prioritize earlier arrival for breeding. Across all latitudes, peak fall migration coincided with the same land surface phenophase, an interval of 26 days prior to dormancy onset. Migrants may rely on phenological events in vegetation during fall stopovers. Considering that (a) migratory passage tracked fall land surface phenology across latitudes at a continental scale, (b) previous studies at local scales have demonstrated the importance of fruit during fall migratory stopover and (c) fruiting phenology in North America is occurring later over time while fall migration is advancing, the potential for mismatch between fall fruiting and bird migration phenology urgently needs further investigation.

4.
Nat Commun ; 14(1): 7446, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049435

ABSTRACT

As billions of nocturnal avian migrants traverse North America, twice a year they must contend with landscape changes driven by natural and anthropogenic forces, including the rapid growth of the artificial glow of the night sky. While airspaces facilitate migrant passage, terrestrial landscapes serve as essential areas to restore energy reserves and often act as refugia-making it critical to holistically identify stopover locations and understand drivers of use. Here, we leverage over 10 million remote sensing observations to develop seasonal contiguous United States layers of bird migrant stopover density. In over 70% of our models, we identify skyglow as a highly influential and consistently positive predictor of bird migration stopover density across the United States. This finding points to the potential of an expanding threat to avian migrants: peri-urban illuminated areas may act as ecological traps at macroscales that increase the mortality of birds during migration.


Subject(s)
Animal Migration , Light Pollution , Animals , United States , Birds , North America , Telemetry , Seasons
5.
Proc Natl Acad Sci U S A ; 120(42): e2306317120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812699

ABSTRACT

Space weather, including solar storms, can impact Earth by disturbing the geomagnetic field. Despite the known dependence of birds and other animals on geomagnetic cues for successful seasonal migrations, the potential effects of space weather on organisms that use Earth's magnetic field for navigation have received little study. We tested whether space weather geomagnetic disturbances are associated with disruptions to bird migration at a macroecological scale. We leveraged long-term radar data to characterize the nightly migration dynamics of the nocturnally migrating North American avifauna over 22 y. We then used concurrent magnetometer data to develop a local magnetic disturbance index associated with each radar station (ΔBmax), facilitating spatiotemporally explicit analyses of the relationship between migration and geomagnetic disturbance. After controlling for effects of atmospheric weather and spatiotemporal patterns, we found a 9 to 17% decrease in migration intensity in both spring and fall during severe space weather events. During fall migration, we also found evidence for decreases in effort flying against the wind, which may represent a depression of active navigation such that birds drift more with the wind during geomagnetic disturbances. Effort flying against the wind in the fall was most reduced under both overcast conditions and high geomagnetic disturbance, suggesting that a combination of obscured celestial cues and magnetic disturbance may disrupt navigation. Collectively, our results provide evidence for community-wide avifaunal responses to geomagnetic disturbances driven by space weather during nocturnal migration.


Subject(s)
Animal Migration , Weather , Animals , Animal Migration/physiology , Birds/physiology , Seasons , Wind
6.
Trends Ecol Evol ; 38(4): 355-368, 2023 04.
Article in English | MEDLINE | ID: mdl-36610920

ABSTRACT

Light pollution is a global threat to biodiversity, especially migratory organisms, some of which traverse hemispheric scales. Research on light pollution has grown significantly over the past decades, but our review of migratory organisms demonstrates gaps in our understanding, particularly beyond migratory birds. Research across spatial scales reveals the multifaceted effects of artificial light on migratory species, ranging from local and regional to macroscale impacts. These threats extend beyond species that are active at night - broadening the scope of this threat. Emerging tools for measuring light pollution and its impacts, as well as ecological forecasting techniques, present new pathways for conservation, including transdisciplinary approaches.


Subject(s)
Biodiversity , Light Pollution , Animals , Behavior, Animal , Birds , Animal Migration
7.
J Anim Ecol ; 92(3): 738-750, 2023 03.
Article in English | MEDLINE | ID: mdl-36655993

ABSTRACT

The timing of avian migration has evolved to exploit critical seasonal resources, yet plasticity within phenological responses may allow adjustments to interannual resource phenology. The diversity of migratory species and changes in underlying resources in response to climate change make it challenging to generalize these relationships. We use bird banding records during spring and fall migration from across North America to examine macroscale phenological responses to interannual fluctuations in temperature and long-term annual trends in phenology. In total, we examine 19 species of North American wood warblers (family Parulidae), summarizing migration timing from 2,826,588 banded birds from 1961 to 2018 across 46 sites during spring and 124 sites during fall. During spring, warmer spring temperatures at banding locations translated to earlier median passage dates for 16 of 19 species, with an average 0.65-day advancement in median passage for every 1°C increase in temperature, ranging from 0.25 to 1.26 days °C-1 . During the fall, relationships were considerably weaker, with only 3 of 19 species showing a relationship with temperature. In those three cases, later departure dates were associated with warmer fall periods. Projecting these trends forward under climate scenarios of temperature change, we forecast continued spring advancements under shared socioeconomic pathways from 2041 to 2060 and 2081 to 2100 and more muted and variable shifts for fall. These results demonstrate the capacity of long-distance migrants to respond to interannual fluctuations in temperatures, at least during the spring, and showcase the potential of North American bird banding data understanding phenological trends across a wide diversity of avian species.


Subject(s)
Animal Migration , Climate Change , Animals , Seasons , Temperature , Birds/physiology , North America
8.
Glob Chang Biol ; 29(5): 1407-1419, 2023 03.
Article in English | MEDLINE | ID: mdl-36397251

ABSTRACT

Organisms have been shifting their timing of life history events (phenology) in response to changes in the emergence of resources induced by climate change. Yet understanding these patterns at large scales and across long time series is often challenging. Here we used the US weather surveillance radar network to collect data on the timing of communal swallow and martin roosts and evaluate the scale of phenological shifts and its potential association with temperature. The discrete morning departures of these aggregated aerial insectivores from ground-based roosting locations are detected by radars around sunrise. For the first time, we applied a machine learning algorithm to automatically detect and track these large-scale behaviors. We used 21 years of data from 12 weather surveillance radar stations in the Great Lakes region to quantify the phenology in roosting behavior of aerial insectivores at three spatial levels: local roost cluster, radar station, and across the Great Lakes region. We show that their peak roosting activity timing has advanced by 2.26 days per decade at the regional scale. Similar signals of advancement were found at the station scale, but not at the local roost cluster scale. Air temperature trends in the Great Lakes region during the active roosting period were predictive of later stages of roosting phenology trends (75% and 90% passage dates). Our study represents one of the longest-term broad-scale phenology examinations of avian aerial insectivore species responding to environmental change and provides a stepping stone for examining potential phenological mismatches across trophic levels at broad spatial scales.


Subject(s)
Radar , Weather , Seasons , Temperature , Climate Change , Great Lakes Region
9.
Glob Ecol Biogeogr ; 31(11): 2219-2230, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36590324

ABSTRACT

Aim: Measuring avian migration can prove challenging given the spatial scope and the diversity of species involved. No one monitoring technique provides all the pertinent measures needed to capture this macroscale phenomenon - emphasizing the need for data integration. Migration phenology is a key metric characterizing large-scale migration dynamics and has been successfully quantified using weather surveillance radar (WSR) data and community science observations. Separately, both platforms have their limitations and measure different aspects of bird migration. We sought to make a formal comparison of the migration phenology estimates derived from WSR and eBird data - of which we predict a positive correlation. Location: Contiguous United States. Time period: 2002-2018. Major taxa studied: Migratory birds. Methods: We estimated spring and autumn migration phenology at 143 WSR stations aggregated over a 17-year period (2002-2018), which we contrast with eBird-based estimates of spring and autumn migration phenology for 293 nocturnally migrating bird species at the 143 WSR stations. We compared phenology metrics derived from all species and WSR stations combined, for species in three taxonomic orders (Anseriformes, Charadriiformes and Passeriformes), and for WSR stations in three North American migration flyways (western, central and eastern). Results: We found positive correlations between WSR and eBird-based estimates of migration phenology and differences in the strength of correlations among taxonomic orders and migration flyways. The correlations were stronger during spring migration, for Passeriformes, and generally for WSR stations in the eastern flyway. Autumn migration showed weaker correlation, and in Anseriformes correlations were weakest overall. Lastly, eBird-based estimates slightly preceded those derived from WSR in the spring, but trailed WSR in the autumn, suggesting that the two data sources measure different components of migration phenology. Main conclusions: We highlight the complementarity of these two approaches, but also reveal strong taxonomic and geographic differences in the relationships between the platforms.

10.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34099553

ABSTRACT

Millions of nocturnally migrating birds die each year from collisions with built structures, especially brightly illuminated buildings and communication towers. Reducing this source of mortality requires knowledge of important behavioral, meteorological, and anthropogenic factors, yet we lack an understanding of the interacting roles of migration, artificial lighting, and weather conditions in causing fatal bird collisions. Using two decades of collision surveys and concurrent weather and migration measures, we model numbers of collisions occurring at a large urban building in Chicago. We find that the magnitude of nocturnal bird migration, building light output, and wind conditions are the most important predictors of fatal collisions. The greatest mortality occurred when the building was brightly lit during large nocturnal migration events and when winds concentrated birds along the Chicago lakeshore. We estimate that halving lighted window area decreases collision counts by 11× in spring and 6× in fall. Bird mortality could be reduced by ∼60% at this site by decreasing lighted window area to minimum levels historically recorded. Our study provides strong support for a relationship between nocturnal migration magnitude and urban bird mortality, mediated by light pollution and local atmospheric conditions. Although our research focuses on a single site, our findings have global implications for reducing or eliminating a critically important cause of bird mortality.


Subject(s)
Birds/physiology , Animal Migration/physiology , Animals , Chicago , Cities , Lighting , Time Factors , Wind
11.
Proc Biol Sci ; 288(1950): 20210232, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33947241

ABSTRACT

Monitoring avian migration within subarctic regions of the globe poses logistical challenges. Populations in these regions often encounter the most rapid effects of changing climates, and these seasonally productive areas are especially important in supporting bird populations-emphasizing the need for monitoring tools and strategies. To this end, we leverage the untapped potential of weather surveillance radar data to quantify active migration through the airspaces of Alaska. We use over 400 000 NEXRAD radar scans from seven stations across the state between 1995 and 2018 (86% of samples derived from 2013 to 2018) to measure spring and autumn migration intensity, phenology and directionality. A large bow-shaped terrestrial migratory system spanning the southern two-thirds of the state was identified, with birds generally moving along a northwest-southeast diagonal axis east of the 150th meridian, and along a northeast-southwest axis west of this meridian. Spring peak migration ranged from 3 May to 30 May and between, 18 August and 12 September during the autumn, with timing across stations predicted by longitude, rather than latitude. Across all stations, the intensity of migration was greatest during the autumn as compared to spring, highlighting the opportunity to measure seasonal indices of net breeding productivity for this important system as additional years of radar measurements are amassed.


Subject(s)
Animal Migration , Radar , Alaska , Animals , Birds , Seasons , Weather
12.
Conserv Biol ; 35(6): 1777-1786, 2021 12.
Article in English | MEDLINE | ID: mdl-33826183

ABSTRACT

Near-term ecological forecasting has the potential to mitigate negative impacts of human modifications on wildlife by directing efficient action through relevant and timely predictions. We used the U.S. avian migration system to highlight ecological forecasting applications for aeroconservation. We used millions of observations from 143 weather surveillance radars to construct and evaluate a migration forecasting system for nocturnal bird migration over the contiguous United States. We identified the number of nights of mitigation required to reduce the risk of aerial hazards to 50% of avian migrants passing a given area in spring and autumn based on dynamic forecasts of migration activity. We also investigated an alternative approach, that is, employing a fixed conservation strategy based on time windows that historically capture 50% of migratory passage. In practice, during both spring and autumn, dynamic forecasts required fewer action nights compared with fixed window selection at all locations (spring: mean of 7.3 more alert days; fall: mean of 12.8 more alert days). This pattern resulted in part from the pulsed nature of bird migration captured in the radar data, where the majority (54.3%) of birds move on 10% of a migration season's nights. Our results highlight the benefits of near-term ecological forecasting and the potential advantages of dynamic mitigation strategies over static ones, especially in the face of increasing risks to migrating birds from light pollution, wind energy infrastructure, and collisions with structures.


La estimación ecológica a corto plazo tiene el potencial para mitigar los impactos negativos de las modificaciones humanas sobre la fauna al dirigir las acciones eficientes mediante predicciones relevantes y oportunas. Usamos el sistema de migración de aves de Estados Unidos para resaltar las aplicaciones de la estimación ecológica para la aeroconservación. Usamos millones de observaciones tomadas de 143 radares de vigilancia climática para construir y evaluar un sistema de estimaciones migratorias para la migración de aves nocturnas en los Estados Unidos contiguos. Identificamos el número de noches de mitigación requeridas para reducir el riesgo de peligros aéreos para el 50% de las aves migratorias que pasan por un área específica en la primavera y en el otoño con base en las estimaciones dinámicas de la actividad migratoria. También investigamos una estrategia alternativa: el uso de una estrategia fija de conservación basada en las ventanas temporales que históricamente han capturado el 50% del pasaje migratorio. En la práctica, durante la primavera y el otoño, las estimaciones dinámicas requirieron menos noches de acción en comparación con la selección de ventana fija en todas las localidades (primavera: promedio de 7.3 más días de alerta; otoño: promedio de 12.8 más días de alerta). Este patrón resultó en parte por la naturaleza pulsada de las migraciones aviarias capturadas en los datos del radar, en los cuales la mayoría de las aves (54.3%) se mueven durante el 10% de las noches durante la temporada migratoria. Nuestros resultados resaltan los beneficios que tienen las estimaciones ecológicas a corto plazo en comparación con las estáticas, especialmente de frente a los riesgos crecientes que encaran las aves migratorias por la contaminación lumínica, la infraestructura de energía eólica y las colisiones con las estructuras.


Subject(s)
Animal Migration , Light Pollution , Animals , Birds , Conservation of Natural Resources , Humans , Seasons , Wind
13.
Environ Pollut ; 270: 116085, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33234373

ABSTRACT

Urban areas often contain large numbers of migratory bird species during seasonal migration, many of which are nocturnal migrants. How artificial light at night (ALAN) and urban landcover are associated with the diurnal occurrence of nocturnal migrants within urban areas across seasons has not been explored. Here, we use eBird bird occurrence information to estimate the seasonal species richness of nocturnally migrating passerines (NMP) within 333 well surveyed urban areas within the contiguous USA. We model the relationship between seasonal NMP species richness and ALAN, proportion of tree canopy cover, and proportion of impervious surface. NMP species richness reached its highest levels during spring and autumn migration and lowest during the winter and summer. Greater tree canopy cover was associated with higher NMP species richness during spring and autumn migration and the summer. A 10% increase in the proportion of tree canopy cover was associated with a 2.0% increase in NMP species richness during spring migration, a 1.8% increase during autumn migration, and a 0.9% increase during the summer. More impervious surface was associated with higher NMP species richness during the winter. A 10% increase in the proportion of impervious surface was associated with a 6.1-9.8% increase in NMP species richness. Higher ALAN was associated with lower NMP species richness during the winter and summer, and higher NMP species richness during spring and autumn migration. A 50% increase in ALAN was associated with a 3.0-3.6% decrease in NMP species richness during the winter, a 1.7% increase during spring migration, a 2.1% decrease during the summer, and a 5.0% increase during autumn migration. These findings highlight the variable effects of ALAN and urban landcover on the seasonal occurrence of NMP species in urban areas, the value of tree canopy cover during migration and the breeding season, and the importance of reducing ALAN during migration.


Subject(s)
Animal Migration , Plant Breeding , Seasons
14.
Ecol Lett ; 24(1): 38-49, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33026159

ABSTRACT

Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover-to-passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south-eastern US, the most prominent corridor for North America's migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.


Subject(s)
Animal Migration , Birds , Animals , Ecosystem , Seasons , Weather
15.
Proc Biol Sci ; 287(1941): 20202482, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33323080

ABSTRACT

Many animals produce coordinated signals, but few are more striking than the elaborate male-female vocal duets produced by some tropical songbirds. Yet, little is known about the factors driving the extreme levels of vocal coordination between mated pairs in these taxa. We examined evolutionary patterns of duet coordination and their potential evolutionary drivers in Neotropical wrens (Troglodytidae), a songbird family well known for highly coordinated duets. Across 23 wren species, we show that the degree of coordination and precision with which pairs combine their songs into duets varies by species. This includes some species that alternate their song phrases with exceptional coordination to produce rapidly alternating duets that are highly consistent across renditions. These highly coordinated, consistent duets evolved independently in multiple wren species. Duet coordination and consistency are greatest in species with especially long breeding seasons, but neither duet coordination nor consistency are correlated with clutch size, conspecific abundance or vegetation density. These results suggest that tightly coordinated duets play an important role in mediating breeding behaviour, possibly by signalling commitment or coalition of the pair to mates and other conspecifics.


Subject(s)
Songbirds/physiology , Vocalization, Animal , Animals , Biological Evolution , Female , Male , Pair Bond , Reproduction
16.
Biol Lett ; 15(9): 20190383, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31530114

ABSTRACT

Applications of remote sensing data to monitor bird migration usher a new understanding of magnitude and extent of movements across entire flyways. Millions of birds move through the western USA, yet this region is understudied as a migratory corridor. Characterizing movements in the Pacific Flyway offers a unique opportunity to study complementary patterns to those recently highlighted in the Atlantic and Central Flyways. We use weather surveillance radar data from spring and autumn (1995-2018) to examine migrants' behaviours in relation to winds in the Pacific Flyway. Overall, spring migrants tended to drift on winds, but less so at northern latitudes and farther inland from the Pacific coastline. Relationships between winds and autumn flight behaviours were less striking, with no latitudinal or coastal dependencies. Differences in the preferred direction of movement (PDM) and wind direction predicted drift patterns during spring and autumn, with increased drift when wind direction and PDM differences were high. We also observed greater total flight activity through the Pacific Flyway during the spring when compared with the autumn. Such complex relationships among birds' flight strategies, winds and seasonality highlight the variation within a migration system. Characterizations at these scales complement our understanding of strategies to clarify aerial animal movements.


Subject(s)
Animal Migration , Wind , Animals , Birds , Flight, Animal , Radar , Seasons
17.
Glob Chang Biol ; 25(3): 1106-1118, 2019 03.
Article in English | MEDLINE | ID: mdl-30623528

ABSTRACT

Quantifying the timing and intensity of migratory movements is imperative for understanding impacts of changing landscapes and climates on migratory bird populations. Billions of birds migrate in the Western Hemisphere, but accurately estimating the population size of one migratory species, let alone hundreds, presents numerous obstacles. Here, we quantify the timing, intensity, and distribution of bird migration through one of the largest migration corridors in the Western Hemisphere, the Gulf of Mexico (the Gulf). We further assess whether there have been changes in migration timing or intensity through the Gulf. To achieve this, we integrate citizen science (eBird) observations with 21 years of weather surveillance radar data (1995-2015). We predicted no change in migration timing and a decline in migration intensity across the time series. We estimate that an average of 2.1 billion birds pass through this region each spring en route to Nearctic breeding grounds. Annually, half of these individuals pass through the region in just 18 days, between April 19 and May 7. The western region of the Gulf showed a mean rate of passage 5.4 times higher than the central and eastern regions. We did not detect an overall change in the annual numbers of migrants (2007-2015) or the annual timing of peak migration (1995-2015). However, we found that the earliest seasonal movements through the region occurred significantly earlier over time (1.6 days decade-1 ). Additionally, body mass and migration distance explained the magnitude of phenological changes, with the most rapid advances occurring with an assemblage of larger-bodied shorter-distance migrants. Our results provide baseline information that can be used to advance our understanding of the developing implications of climate change, urbanization, and energy development for migratory bird populations in North America.


Subject(s)
Animal Migration , Birds/physiology , Animals , Gulf of Mexico , Seasons , Temperature , Weather
18.
Glob Chang Biol ; 25(2): 589-601, 2019 02.
Article in English | MEDLINE | ID: mdl-30537359

ABSTRACT

Current climate models and observations indicate that atmospheric circulation is being affected by global climate change. To assess how these changes may affect nocturnally migrating bird populations, we need to determine how current patterns of wind assistance at migration altitudes will be enhanced or reduced under future atmospheric conditions. Here, we use information compiled from 143 weather surveillance radars stations within the contiguous United States to estimate the daily altitude, density, and direction of nocturnal migration during the spring and autumn. We intersected this information with wind projections to estimate how wind assistance is expected to change during this century at current migration altitudes. The prevailing westerlies at midlatitudes are projected to increase in strength during spring migration and decrease in strength to a lesser degree during autumn migration. Southerly winds will increase in strength across the continent during both spring and autumn migration, with the strongest gains occurring in the center of the continent. Wind assistance is projected to increase across the central (0.44 m/s; 10.1%) and eastern portions of the continent (0.32 m/s; 9.6%) during spring migration, and wind assistance is projected to decrease within the central (0.32 m/s; 19.3%) and eastern portions of the continent (0.17 m/s; 6.6%) during autumn migration. Thus, across a broad portion of the continent where migration intensity is greatest, the efficiency of nocturnal migration is projected to increase in the spring and decrease in the autumn, potentially affecting time and energy expenditures for many migratory bird species. These findings highlight the importance of placing climate change projections within a relevant ecological context informed through empirical observations, and the need to consider the possibility that climate change may generate both positive and negative implications for natural systems.


Subject(s)
Animal Migration , Birds/physiology , Climate Change , Wind , Animals , Seasons , United States
19.
Biol Lett ; 14(11)2018 11 14.
Article in English | MEDLINE | ID: mdl-30429244

ABSTRACT

Light cues elicit strong responses from nearly all forms of life, perhaps most notably as circadian rhythms entrained by periods of daylight and darkness. Atypical periods of darkness, like solar eclipses, provide rare opportunities to study biological responses to light cues. By using a continental scale radar network, we investigated responses of flying animals to the total solar eclipse of 21 August 2017. We quantified the number of biological targets in the atmosphere at 143 weather radar stations across the continental United States to investigate whether the decrease in light and temperature at an atypical time would initiate a response like that observed at sunset, when activity in the atmosphere usually increases. Overall, biological activity decreased in the period leading to totality, followed by a short low-altitude spike of biological activity during totality in some radars. This pattern suggests that cues associated with the eclipse were insufficient to initiate nocturnal activity comparable to that occurring at sunset but sufficient to suppress diurnal activity.


Subject(s)
Birds/physiology , Chiroptera/physiology , Darkness , Flight, Animal , Insecta/physiology , Sunlight , Animals , Circadian Rhythm , Temperature , Time Factors , United States
20.
Science ; 361(6407): 1115-1118, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30213913

ABSTRACT

Billions of animals cross the globe each year during seasonal migrations, but efforts to monitor them are hampered by the unpredictability of their movements. We developed a bird migration forecast system at a continental scale by leveraging 23 years of spring observations to identify associations between atmospheric conditions and bird migration intensity. Our models explained up to 81% of variation in migration intensity across the United States at altitudes of 0 to 3000 meters, and performance remained high in forecasting events 1 to 7 days in advance (62 to 76% of variation was explained). Avian migratory movements across the United States likely exceed 500 million individuals per night during peak passage. Bird migration forecasts will reduce collisions with buildings, airplanes, and wind turbines; inform a variety of monitoring efforts; and engage the public.


Subject(s)
Accident Prevention/methods , Animal Migration , Birds , Environmental Monitoring/methods , Altitude , Animals , Forecasting , Seasons , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...