Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(12): e0261278, 2021.
Article in English | MEDLINE | ID: mdl-34914796

ABSTRACT

As part of a wider reform to scaffold quantitative and research skills throughout the biology major, we introduced course-based undergraduate research experiences (CURE) in sections of a large-enrollment introductory biology laboratory course in a mid-level, public, minority-serving institution. This initiative was undertaken as part of the in the National Science Foundation / Council for Undergraduate Research Transformations Project. Student teams performed two or three experiments, depending on semester. They designed, implemented, analyzed, revised and iterated, wrote scientific paper-style reports, and gave oral presentations. We tested the impact of CURE on student proficiency in experimental design and statistical reasoning, and student research confidence and attitudes over two semesters. We found that students in the CURE sections met the reformed learning objectives for experimental design and statistical reasoning. CURE students also showed higher levels of experimental design proficiency, research self-efficacy, and more expert-like scientific mindsets compared to students in a matched cohort with the traditional design. While students in both groups described labs as a positive experience in end-of-semester reflections, the CURE group showed a high level of engagement with the research process. Students in CURE sections identified components of the research process that were difficult, while also reporting enjoying and valuing research. This study demonstrates improved learning, confidence, and attitudes toward research in a challenging CURE laboratory course where students had significant autonomy combined with appropriate support at a diverse public university.


Subject(s)
Education/methods , Laboratory Personnel/education , Research/education , Academic Success , Adolescent , Attitude , Biology/education , Curriculum/trends , Educational Measurement/methods , Female , Humans , Laboratories , Learning , Male , Science/education , Students/psychology , Universities/trends , Young Adult
2.
CBE Life Sci Educ ; 13(3): 425-36, 2014.
Article in English | MEDLINE | ID: mdl-25185226

ABSTRACT

Learning to identify organisms is extraordinarily difficult, yet trained field biologists can quickly and easily identify organisms at a glance. They do this without recourse to the use of traditional characters or identification devices. Achieving this type of recognition accuracy is a goal of many courses in plant systematics. Teaching plant identification is difficult because of variability in the plants' appearance, the difficulty of bringing them into the classroom, and the difficulty of taking students into the field. To solve these problems, we developed and tested a cognitive psychology-based computer program to teach plant identification. The program incorporates presentation of plant images in a homework-based, active-learning format that was developed to stimulate expert-level visual recognition. A controlled experimental test using a within-subject design was performed against traditional study methods in the context of a college course in plant systematics. Use of the program resulted in an 8-25% statistically significant improvement in final exam scores, depending on the type of identification question used (living plants, photographs, written descriptions). The software demonstrates how the use of routines to train perceptual expertise, interleaved examples, spaced repetition, and retrieval practice can be used to train identification of complex and highly variable objects.


Subject(s)
Knowledge , Learning , Plants/classification , Science/education , Universities , Curriculum , Educational Measurement , Humans , Statistics as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...