Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 14(6): 2134-44, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26762685

ABSTRACT

Sixteen new isothiazoloisoxazole 1,1-dioxides, one new isothiazolotriazole and one new isothiazolopyrazole have been synthesised by using 1,3-dipolar cycloadditions to isothiazole 1,1-dioxides. One sub-set of these isothiazoloisoxazoles showed low µM activity against a human breast carcinoma cell line, whilst a second sub-set plus the isothiazolotriazole demonstrated an interesting restricted rotation of sterically hindered bridgehead substituents. A thiazete 1,1-dioxide produced from one of the isothiazole 1,1-dioxides underwent conversion into an unknown 1,2,3-oxathiazolin-2-oxide upon treatment with Lewis acids, but was inert towards 1,3-dipoles and cyclopropenones. Six supporting crystal structures are included.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Isoxazoles/pharmacology , Thiazoles/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Isoxazoles/chemical synthesis , Isoxazoles/chemistry , MCF-7 Cells , Molecular Conformation , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
2.
Org Biomol Chem ; 13(37): 9629-36, 2015 Oct 07.
Article in English | MEDLINE | ID: mdl-26264424

ABSTRACT

The racemic tertiary cathinones N,N-dimethylcathinone (1), N,N-diethylcathinone (2) and 2-(1-pyrrolidinyl)-propiophenone (3) have been prepared in reasonable yield and characterized using NMR and mass spectroscopy. HPLC indicates that these compounds are isolated as the anticipated racemic mixture. These can then be co-crystallized with (+)-O,O'-di-p-toluoyl-D-tartaric, (+)-O,O'-dibenzoyl-D-tartaric and (−)-O,O'-dibenzoyl-L-tartaric acids giving the single enantiomers S and R respectively of 1, 2 and 3, in the presence of sodium hydroxide through a dynamic kinetic resolution. X-ray structural determination confirmed the enantioselectivity. The free amines could be obtained following basification and extraction. In methanol these are reasonably stable for the period of several hours, and their identity was confirmed by HPLC and CD spectroscopy.


Subject(s)
Alkaloids/chemistry , Alkaloids/isolation & purification , Amines/chemistry , Models, Molecular , Molecular Conformation
3.
Inorg Chem ; 47(5): 1607-15, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18247541

ABSTRACT

PalladiumII and nickelII halide complexes of the ferrocenyl polyphosphines 1,1',2,3-tetrakis(diphenylphosphino)ferrocene (1), and 1,1',2-tris(diphenylphosphino)-4-tert-butylferrocene (5) were prepared and characterized by multinuclear NMR. The metallo-ligand 1, the palladium [Pd2Cl4(1)] (3b) and nickel [NiCl2(5)] (6) coordination complexes were additionally characterized by X-ray diffraction crystallography. The behavior of 1 toward coordination to nickel and palladium was surprisingly different because the coordination of a second metal center after the initial 1,2-phosphorus-bonding of nickel was markedly difficult. The preference of nickel for 1,2-P coordination on 1,1'-bonding was confirmed by the exclusive formation of 6 from 5. The changes noted between the solid state structure of the ligand 1 and the structure obtained for the dinuclear palladium complex 3b reveal the rotational flexibility of this tetraphosphine. This flexibility is at the origin of the unique framework for a metallocenic dinuclear metal complex in which both coexist a 1,1'-heteroannular chelating P-bonding and a 2,3-homoannular chelating P-bonding with two palladium centers. Some reported specimens of ferrocenyl polyphosphines of constrained geometry have previously revealed that phosphorus lone pair overlap can lead to very intense "through-space" 31P31P nuclear spin-spin coupling constants (JPP) ( J. Am. Chem. Soc. 2004, 126 (35), 11077-11087] in solution phase. In these cases, an internuclear distance between heteroannular phosphorus atoms below 4.9 A, with an adequate orientation of the lone-pairs in the solid state and in solution, was a necessary parameter. The flexibility of the new polyphosphines 1 and 5 does not allow that spatial proximity (internuclear distances between heteroannular phosphorus above 5.2 A in the solid state); accordingly the expected through-space nuclear spin-spin coupling constants were not detected in any of their coordination complexes nor in 1.

SELECTION OF CITATIONS
SEARCH DETAIL
...