Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 2(5): 257-64, 2003 10.
Article in English | MEDLINE | ID: mdl-14570233

ABSTRACT

The genetic basis for aging is being intensely investigated in a variety of model systems. Much of the focus in Drosophila has been on the molecular-genetic determinants of lifespan, whereas the molecular-genetic basis for age-related functional declines has been less vigorously explored. We evaluated behavioural aging and lifespan in flies harbouring loss-of-function mutations in myospheroid, the gene that encodes betaPS, a beta integrin. Integrins are adhesion molecules that regulate a number of cellular processes and developmental events. Their role in aging, however, has received limited attention. We report here that age-related declines in locomotor activity are ameliorated and that mean lifespan is increased in myospheroid mutants. The delayed functional senescence and altered mortality in myospheroid flies are independent of changes in body size, reproduction or stress resistance. Our data indicate that functional senescence and age-dependent mortality are influenced by beta integrins in Drosophila.


Subject(s)
Cellular Senescence , Drosophila Proteins/physiology , Drosophila/cytology , Integrins/physiology , Animals , Apoptosis , Behavior, Animal , Cellular Senescence/genetics , Desiccation , Drosophila/genetics , Drosophila/physiology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Female , Integrin alpha Chains , Integrins/genetics , Integrins/metabolism , Mutation, Missense , Paraquat/pharmacology , Starvation/genetics
2.
Article in English | MEDLINE | ID: mdl-12756487

ABSTRACT

The efficient processing of olfactory information is crucial for many aspects of life in animals, including behavior in insects. While much is known about the organization of the insect olfactory system, comparatively little is understood about the molecules that support its function. To further elucidate the molecular basis of olfaction, we explored the role of the calcium-binding chaperone calreticulin in the behavioral response of Drosophila to aversive odorants. We show that avoidance of naturally aversive odorants is impaired in flies harboring mutations in Calreticulin. Calreticulin mutants have broad defects in odor avoidance without abnormalities in antennal responses to odorants, alterations in central nervous system structure, or deficits in overall locomotor abilities. Interestingly, Calreticulin mutants exhibit defects in behavioral responses to odorants at low strength, whereas responses to higher odorant concentrations are preserved in these animals. Our studies indicate that calreticulin plays a key role in olfactory system function, possibly by establishing its overall sensitivity to odorants.


Subject(s)
Avoidance Learning/physiology , Calreticulin/biosynthesis , Drosophila/metabolism , Odorants , Smell/physiology , Alleles , Animals , Behavior, Animal/physiology , Calreticulin/genetics , Drosophila/genetics , Loss of Heterozygosity/physiology , Mutation , Smell/genetics
3.
Nucleic Acids Res ; 10(14): 4449-64, 1982 Jul 24.
Article in English | MEDLINE | ID: mdl-6750556

ABSTRACT

We report 67.8 MHz carbon-13 spin-lattice relaxation studies on [4-13C-uracil] labeled tRNAIVal purified from E. coli SO-187. Following 13C-enriched C4 carbonyl resonances from modified and unsubstituted uridines scattered throughout the polymer backbone enables us to determine dynamical features in both loop and helical stem regions. The experimental results have been analyzed in terms of a model of isotropic overall molecular reorientation. "Anomalous" residues for which the experimental data cannot be accounted for in terms of the model provide an assessment of local and regional properties. Thus, "native" tRNAIVal under physiological conditions of magnesium (10 mM) and temperature (20 degrees - 40 degrees C), exhibits the following characteristics: 1) uridines held rigidly in helical stems and tertiary interactions display correlation times for rotational reorientation of 15-20 nsecs, typical for overall tRNA motion; 2) uridines in loops such as the wobble residue uridine-5-oxyacetic acid (V34) are quite accessible to solvent; moreover V34 and another loop residue, D17, exhibit local mobility; 3) the tertiary interactions involving 4-thio uridine (s4U8) and A14 and ribothymidine (rT54) and A58 are weakened as temperature increases.


Subject(s)
Escherichia coli/analysis , RNA, Transfer, Amino Acyl , Base Sequence , Magnetic Resonance Spectroscopy , Mathematics , Models, Molecular , Nucleic Acid Conformation , Temperature , Uracil
4.
Proc Natl Acad Sci U S A ; 78(9): 5325-8, 1981 Sep.
Article in English | MEDLINE | ID: mdl-6946473

ABSTRACT

The purpose of this study was to assess the ability of hepatocytes to synthesize porphyrins and heme from delta-aminolevulinic acid derived from gamma, delta-dioxovalerate and alanine. An alternate pathway for delta-aminolevulinic acid synthesis, in contrast to the condensation of succinate and glycine by delta-aminolevulinate synthase [succinyl-CoA:glycine C-succinyltransferase (decarboxylating), EC 2.3.1.37] has been suggested. This has been supported by the isolation of gamma, delta-dioxovalerate transaminase from liver mitochondria (Varticovski, L., Kushner, J. P. & Burnham, B. F. (1980) J. Biol. Chem. 255, 3742-3747). Gamma, delta-dioxovalerate transaminase catalyzes the formation of delta-aminolevulinic acid by a transamination reaction involving gamma, delta-dioxovalerate and alanine. To assess the significance of this alternate route, we prepared suspensions of respiring rat hepatocytes, which were incubated with optimal concentrations of various additives and then analyzed spectrophotometrically for synthesized porphyrins. No porphyrin synthesis was detected in cell suspensions incubated with succinate(1 mM) and glycine (20 mM). Cell suspensions incubated with gamma, delta-dioxovalerate (0.5-1.0 mM) and alanine (20 mM) synthesized 0.19 nmol of porphyrin per 10(7) cells per 2 hr (SD, 0.057). Cell suspensions incubated with delta-aminolevulinic acid (0.1 mM) synthesized 1.26 nmol of porphyrin per 10(7) cells per 2 hr (range, 1.18-1.32). Incubations with chemically synthesized gamma, delta-dioxo[5-14C]valerate were followed by extraction and purification of porphyrin esters and heme. Liquid scintillation counting revealed radiolabel incorporation into both porphyrins and heme. These studies demonstrate significant tetrapyrrole synthesis by the gamma, delta-dioxovalerate transaminase reaction. That gamma, delta-dioxovalerate is an important precursor of heme in vivo must be considered.


Subject(s)
Aminolevulinic Acid/biosynthesis , Keto Acids/metabolism , Levulinic Acids/biosynthesis , Liver/metabolism , Valerates/metabolism , Alanine/metabolism , Animals , Cells, Cultured , Glycine/metabolism , Heme/biosynthesis , Male , Porphyrins/biosynthesis , Rats , Succinates/metabolism , Succinic Acid
5.
Nucleic Acids Res ; 8(9): 2075-83, 1980 May 10.
Article in English | MEDLINE | ID: mdl-7001371

ABSTRACT

In this paper we describe carbon-13 nuclear magnetic resonance results on 13C-enriched purified transfer RNAI(VAL) from from E. coli SO-187, a uracil requiring auxotroph. The organism was grown on uracil 90% 13C-enriched at the carbonyl C4 position. Transfer RNAI(Val) was purified from bulk tRNA by sequential chromatography on columns of BD cellulose, DEAE-Sephadex A-50 and reverse gradient sepharose 4B. Dihydrouridine, 4-thiouridine, and uridine 5-oxyacetic acid located at discrete positions in the polymer backbone were tentatively assigned in the highly resolved 25 MHz 13C-spectra. Chemical shift versus temperature plots reveal differential thermal perturbation of the ordered solution structure, evident in the large dispersion (ca 3-4 ppm) of the uridine C4 resonances. Over the range 26-68 degrees C, V in the anticodon displays the largest downfield shift. Whereas several uridine residues rapidly shift downfield between 50-68 degrees, one moves upfield beginning at 37 degrees. The results are qualitatively compared with proton NMR analysis of the three dimensional structure.


Subject(s)
Escherichia coli/metabolism , RNA, Transfer, Amino Acyl/metabolism , Valine/metabolism , Carbon Isotopes , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Temperature
7.
J Biol Chem ; 251(23): 7661-8, 1976 Dec 10.
Article in English | MEDLINE | ID: mdl-1002707

ABSTRACT

Carbon 13 nuclear magnetic resonance spectroscopy has been used to monitor the nonenzymatic reactions of pyridoxal 5'-phosphate with glycine, alanine, valine, serine, and with several other model compounds. Isotopically enriched amino acids were employed so that low concentrations could be utilized while still allowing relatively rapid acquisition of spectral data. The results for alanine and serine are particularly noteworthy in that alanine is deaminated to pyruvate and pyruvate is aminated to alanine, but contrary to the enzymatic reactions of various serine dehydratases wherein serine is converted to pyruvate, the nonenzymatic reaction utilizing serine results in hydroxypruvate rather than pyruvate formation. In the reverse reaction, hydroxypyruvate is aminated to serine but very inefficiently relative to the amination of pyruvate to alanine. The experimental results have been formulated into a proposed reaction mechanism for deamination of amino acids by pyridoxal-P.


Subject(s)
Amino Acids , Pyridoxal Phosphate , Alanine , Ammonia , Binding Sites , Carbon Isotopes , Chemical Phenomena , Chemistry , Formaldehyde , Glycine , Magnetic Resonance Spectroscopy , Molecular Conformation , Pyridoxamine , Sarcosine , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...