Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 39(15): 3125-39, 2000 Jul 24.
Article in English | MEDLINE | ID: mdl-11196847

ABSTRACT

We report herein a comprehensive study of (porphinato)iron [PFe]-catalyzed isobutane oxidation in which molecular oxygen is utilized as the sole oxidant; these catalytic reactions were carried out and monitored in both autoclave reactors and sapphire NMR tubes. In situ 19F and 13C NMR experiments, coupled with GC analyses and optical spectra obtained from the autoclave reactions have enabled the identification of the predominant porphyrinic species present during PFe-catalyzed oxidation of isobutane. Electron-deficient PFe catalysts based on 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin [(C6F5)4PH2], 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(pentafluorophenyl) porphyrin [Br8(C6F5)4PH2], and 5,10,15,20-tetrakis(heptafluoropropyl) porphyrin [(C3F7)4PH2] macrocycles were examined. The nature and distribution of hydrocarbon oxidation products show that an autoxidation reaction pathway dominates the reaction kinetics, consistent with a radical chain process. For each catalytic system examined, PFeII species were shown not to be stable under moderate O2 pressure at 80 degrees C; in every case, the PFeII catalyst precursor was converted quantitatively to high-spin PFeIII complexes prior to the observation of any hydrocarbon oxidation products. Once catalytic isobutane oxidation is initiated, all reactions are marked by concomitant decomposition of the porphyrin-based catalyst. In situ 17O NMR spectroscopic studies confirm the incorporation of 17O from labeled water into the oxidation products, implicating the involvement of PFe-OH in the catalytic cycle. Importantly, Br8(C6F5)4PFe-based catalysts, which lack macrocycle C-H bonds, do not exhibit augmented stability with respect to analogous catalysts based on (C6F5)4PFe and (C3F7)4PFe species. The data presented are consistent with a hydrocarbon oxidation process in which PFe complexes play dual roles of radical chain initiator, and the species responsible for the catalytic decomposition of organic peroxides. This modified Haber-Weiss reaction scheme provides for the decomposition of tert-butyl hydroperoxide intermediates via reaction with PFe-OH complexes; the PFeIII species responsible for hydroperoxide decomposition are regenerated by reaction of PFeII with dioxygen under these experimental conditions.

2.
Science ; 266(5182): 72-5, 1994 Oct 07.
Article in English | MEDLINE | ID: mdl-17814001

ABSTRACT

A novel concept for performing stoichiometric and catalytic chemical transformations has been developed that is based on the limited miscibility of partially or fully fluorinated compounds with nonfluorinated compounds. A fluorous biphase system (FBS) consists of a fluorous phase containing a dissolved reagent or catalyst and another phase, which could be any common organic or nonorganic solvent with limited or no solubility in the fluorous phase. The fluorous phase is defined as the fluorocarbon (mostly perfluorinated alkanes, ethers, and tertiary amines)-rich phase of a biphase system. An FBS compatible reagent or catalyst contains enough fluorous moieties that it will be soluble only or preferentially in the fluorous phase. The most effective fluorous moieties are linear or branched perfluoroalkyl chains with high carbon number; they may also contain heteroatoms. The chemical transformation may occur either in the fluorous phase or at the interface of the two phases. The application of FBS has been demonstrated for the extraction of rhodium from toluene and for the hydroformylation of olefins. The ability to separate a catalyst or a reagent from the products completely at mild conditions could lead to industrial application of homogeneous catalysts or reagents and to the development of more environmentally benign processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...