Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(22): 4474-4482, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38807530

ABSTRACT

We report a full-dimensional ab initio analytical potential energy surface (PES), which accurately describes the HCl + C2H5 multichannel reaction. The new PES is developed by iteratively adding selected configurations along HCl + C2H5 quasi-classical trajectories (QCTs), thereby improving our previous Cl(2P3/2) + C2H6 PES using the Robosurfer program package. QCT simulations for the H'Cl + C2H5 reaction reveal hydrogen-abstraction, chlorine-abstraction, and hydrogen-exchange channels leading to Cl + C2H5H', H' + C2H5Cl, and HCl + C2H4H', respectively. Hydrogen abstraction dominates in the collision energy (Ecoll) range of 1-80 kcal/mol and proceeds with indirect isotropic scattering at low Ecoll and forward-scattered direct stripping at high Ecoll. Chlorine abstraction opens around 40 kcal/mol collision energy and becomes competitive with hydrogen abstraction at Ecoll = 80 kcal/mol. A restricted opening of the cone of acceptance in the Cl-abstraction reaction is found to result in the preference for a backward-scattering direct-rebound mechanism at all energies studied. Initial attack-angle distributions show mainly side-on collision preference of C2H5 for both abstraction reactions, and in the case of the HCl reactant, H/Cl-side preference for the H/Cl abstraction. For hydrogen abstraction, the collision energy transfer into the product translational and internal energy is almost equally significant, whereas in the case of chlorine abstraction, most of the available energy goes into the internal degrees of freedom. Hydrogen exchange is a minor channel with nearly constant reactivity in the Ecoll range of 10-80 kcal/mol.

2.
Surgery ; 161(6): 1696-1709, 2017 06.
Article in English | MEDLINE | ID: mdl-28242089

ABSTRACT

BACKGROUND: Methane is part of the gaseous environment of the intestinal lumen. The purpose of this study was to elucidate the bioactivity of exogenous methane on the intestinal barrier function in an antigen-independent model of acute inflammation. METHODS: Anesthetized rats underwent sham operation or 45-min occlusion of the superior mesenteric artery. A normoxic methane (2.2%)-air mixture was inhaled for 15 min at the end of ischemia and at the beginning of a 60-min or 180-min reperfusion. The integrity of the epithelial barrier of the ileum was assessed by determining the lumen-to-blood clearance of fluorescent dextran, while microvascular permeability changes were detected by the Evans blue technique. Tissue levels of superoxide, nitrotyrosine, myeloperoxidase, and endothelin-1 were measured, the superficial mucosal damage was visualized and quantified, and the serosal microcirculation and mesenteric flow was recorded. Erythrocyte deformability and aggregation were tested in vitro. RESULTS: Reperfusion significantly increased epithelial permeability, worsened macro- and microcirculation, increased the production of proinflammatory mediators, and resulted in a rapid loss of the epithelium. Exogenous normoxic methane inhalation maintained the superficial mucosal structure, decreased epithelial permeability, and improved local microcirculation, with a decrease in reactive oxygen and nitrogen species generation. Both the deformability and aggregation of erythrocytes improved with incubation of methane. CONCLUSION: Normoxic methane decreases the signs of oxidative and nitrosative stress, improves tissue microcirculation, and thus appears to modulate the ischemia-reperfusion-induced epithelial permeability changes. These findings suggest that the administration of exogenous methane may be a useful strategy for maintaining the integrity of the mucosa sustaining an oxido-reductive attack.


Subject(s)
Capillary Permeability/drug effects , Ileum/drug effects , Intestinal Mucosa/drug effects , Methane/pharmacology , Reperfusion Injury/drug therapy , Administration, Inhalation , Animals , Disease Models, Animal , Endothelin-1/drug effects , Endothelin-1/metabolism , Ileum/metabolism , Immunohistochemistry , Intestinal Mucosa/metabolism , Male , Mesenteric Artery, Superior/surgery , Oxidative Stress/drug effects , Peroxidase/drug effects , Peroxidase/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Reference Values , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...