Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Eur J Sport Sci ; 23(6): 914-924, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36437487

ABSTRACT

Tennis shoe characteristics need to minimise the risk of athletes suffering ankle injuries and improve players' feet performance. This study aims to evaluate the influence of shoe torsional stiffness on running velocity, stance duration, ground reaction forces and ankle biomechanics during two different tennis forehand runs and strokes. Ten right-handed advanced male tennis players performed two specific tennis forehand runs and strokes at maximal effort (a shuttle run with a defensive open stance forehand - SRDF and a lateral jab run with an offensive open stance forehand - JROF) with four different pairs of tennis shoes with different torsional stiffness. A force platform measured ground reaction forces (GRF). A motion capture system recorded the 3D trajectories of markers located on players' anatomical landmarks. The minimum, maximum angle value, and range of motion were computed using inverse kinematics for each rotation axis of the right ankle. Normalised maximal ankle torques were also computed using inverse dynamics. Shoe torsional stiffness had no effect on running velocity, on stance duration and maximal values of GRF. Shoe torsional stiffness influenced forefoot inversion which was significantly higher for the most flexible shoes. For SRDF, the maximal ankle inversion angle was significantly and largely increased for the stiffest shoe. The stiffest shoe may put the ankle at a higher risk of lateral sprains during SRDF while it was not the case during JROF.HighlightsShoe torsional stiffness has no effect on performance parameters (running velocity of the centre of mass, ground reaction forces, and stance duration) during tennis forehand strokes.Decreased shoe torsional stiffness increased the maximal forefoot inversion angle and the range of motion of forefoot inversion-eversion during tennis forehand strokes and movements.Increased footwear torsional stiffness causes higher maximal ankle inversion angle which may increase the risk for ankle sprains in SRDF.


Subject(s)
Ankle Injuries , Tennis , Male , Humans , Ankle , Biomechanical Phenomena , Shoes , Lower Extremity
2.
Eur J Appl Physiol ; 123(1): 169-177, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36229743

ABSTRACT

BACKGROUND: Shoe longitudinal bending stiffness is known to influence running economy (RE). Recent studies showed divergent results ranging from 3% deterioration to 3% improvement in RE when bending stiffness increases. The variability of these results highlights inter-individual differences. Thus, our purpose was to study the runner-specific metabolic responses to changes in shoe bending stiffness. METHODS: After assessing their maximal oxygen consumption ([Formula: see text] max) and aerobic speed (MAS) during a first visit, 96 heterogeneous runners performed two treadmill 5 min runs at 75% [Formula: see text] max with two different prototypes of shoes on a second day. Prototypes differed only by their forefoot bending stiffness (17 N/mm vs. 10.4 N/mm). RE and stride kinematics were recorded during each trial. A clustering analysis was computed by comparing the measured RE and the technical measurement error of our gas exchange analyzer to identify functional groups of runners, i.e., responding similarly to footwear interventions. ANOVAs were then computed on biomechanical and morphological variables to compare the functional groups. RESULTS: Considering the whole sample (n = 96), there was no significant difference in RE between the two conditions. Cluster 1 (n = 29) improves RE in the stiffest condition (2.7 ± 2.1%). Cluster 2 (n = 26) impairs RE in the stiffest condition (2.7 ± 1.3%). Cluster 3 (n = 41) demonstrated no change in RE (0.28 ± 0.65%). Cluster 1 demonstrated 1.7 km·h-1 greater MAS compared to cluster 2 (p = 0.014). CONCLUSION: The present study highlights that the effect of shoe bending stiffness on RE is runner-specific. High-level runners took advantage of increased bending stiffness, whereas medium-level runners did not. Finally, this study emphasizes the importance of individual response examination to understand the effect of footwear on runner's performance.


Subject(s)
Running , Shoes , Humans , Running/physiology , Foot/physiology , Biomechanical Phenomena/physiology , Cluster Analysis
3.
Article in English | MEDLINE | ID: mdl-33345106

ABSTRACT

The purpose of this study was (i) to assess the differences in relative glide time and both ski edging angle and plantar pressure mediolateral distribution in skiers of different levels and (ii) to further investigate the relationships between the aforementioned variables. Twelve male cross-country skiers (6 national and 6 regional level) skied at 4.2 m s-1 on a 2.5° uphill snow track using the V2 technique. The relative glide time (in percentage of contact time) and mediolateral plantar pressure distribution variables (asymmetry index, ASI) were derived from pressure insole measurements. Ski edging angle variables were calculated from an Inertial Measurement Unit placed on the ski. Minimum, maximum, mean, and range of both ASI and ski edging angle were computed over the gliding phase, giving information about the beginning, end, and throughout the gliding phase. Relative glide time was significantly higher, and minimum and mean ASI were significantly lower in the national- than in the regional-level skiers. Relative glide time was strongly negatively correlated to minimum ASI (i.e., plantar pressure mostly on the foot lateral side at the beginning of gliding phase) and strongly positively correlated to ASI range. These results may reflect a larger body mass transfer above the ski from the beginning of the gliding phase to increase gliding, especially in the national-level skiers. Ski edging angle seems less relevant to discriminate skiers' level of performance. These results have direct consequences on how technique must be taught to young cross-country skiers.

4.
Scand J Med Sci Sports ; 30(9): 1642-1654, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32485036

ABSTRACT

Compared to level running (LR), different strategies might be implemented by runners to cope with specific challenges of graded running at different speeds. The changes in joint kinetics and kinematics associated with graded running have been investigated, but their interactions with speed are unknown. Nineteen participants ran on an instrumented treadmill at five grades (0°, ±5° and ± 10°) and three speeds (2.50, 3.33 and 4.17 m/s), while 3D motion and forces were recorded. Three speed × five-grade repeated-measures ANOVA was used to analyze kinetic and kinematic variables. A speed × grade interaction was observed for hip range of motion (ROM). Downhill running (DR) at fastest speed did not reduce ROM at the hip, compared to LR. Compared to LR, it was observed that the hip joint was responsible for a greater contribution of energy generation while running at the fastest speed at +10°. Speed × grade interactions were also observed for the energy absorption, peak moment, and peak power at the knee. Contrary to LR, running faster during UR did not require higher peak power at the knee. Finally, DR at the fastest speed did not increase peak negative power at the knee compared to LR. This study demonstrates that ankle, knee, and hip joint kinetics depend on speed and grade of running, while the effect of grade on joint kinematics was not substantially modulated by speed.


Subject(s)
Ankle Joint/physiology , Hip Joint/physiology , Knee Joint/physiology , Running/physiology , Adolescent , Adult , Biomechanical Phenomena , Exercise Test , Female , Humans , Kinetics , Male , Range of Motion, Articular/physiology , Young Adult
5.
Scand J Med Sci Sports ; 30(9): 1632-1641, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32396672

ABSTRACT

Biomechanical alterations with graded running have only been partially quantified, and the potential interactions with running speed remain unclear. We measured spatiotemporal parameters, ground reaction forces, and leg muscle activations (EMG) in nineteen adults (10F/9M) running on an instrumented treadmills at 2.50, 3.33, and 4.17 m·s-1 and 0, ±5°, and ±10°. Step frequency illustrated a significant speed × grade interaction (P < .001) and was highest (+3%) at the steepest grade (+10°) and fastest speed (4.17 m·s-1 ) when compared to level running (LR) at the same speed. Significant interaction was also observed for ground reaction forces (all P ≤ .047). Peak ground reaction forces in the normal direction increased with running speed during downhill running (DR) only (+9% at -10° and 4.17 m·s-1 ). Impulse in the normal direction decreased at fastest speed and steepest DR (-9%) and uphill running (UR) (-17%) grades. Average normal loading rate increased and decreased at fastest speed and steepest DR (+52%) and UR (-28%) grades, respectively. Negative parallel impulse increased and decreased at fastest speed and steepest DR (+166%) and UR (-90%), respectively. Positive parallel impulse decreased and increased at fastest speed and steepest DR (-75%) and UR (+111%), respectively. EMG showed comparable u-shaped curves across the grades investigated, although only a change in vastus lateralis and tibilias anterior activity was detectable at the steepest grades and fastest speed. Overall, running grade and speed significantly influences spatiotemporal parameters, ground reaction forces, and muscle activations.


Subject(s)
Leg/physiology , Muscle, Skeletal/physiology , Running/physiology , Adolescent , Adult , Biomechanical Phenomena , Exercise Test , Female , Humans , Male , Young Adult
6.
Eur J Sport Sci ; 20(4): 495-504, 2020 May.
Article in English | MEDLINE | ID: mdl-31311427

ABSTRACT

Research has suggested that a high variability in foot strike pattern during downhill running is associated with lower neuromuscular fatigue of the plantar flexors (PF). Given the popularity of trail running, we designed an intervention study to investigate whether a strategy with regular changes in foot strike pattern during downhill running could reduce the extent of fatigue on neuromuscular, energetics and biomechanical parameters as well as increase an uphill time-to-exhaustion trial (TTE) performance. Fourteen experienced trail runners completed two interventional conditions (separated by 15 days) in a pseudo-randomised and counter-balanced order that consisted of 2.5-h of treadmill graded running with (switch condition) or without (control condition) a change between fore- and rear-foot strike pattern every 30 s during the downhill sections. Pre and Post, neuromuscular tests were performed to assess PF central and peripheral fatigue. Energy cost of running was assessed using an indirect calorimetry system and biomechanical gait parameters were acquired with an instrumented treadmill. TTE was performed after both the graded running conditions. There were not significant condition × time interactions (p ≥ .085) for any of the variables considered, and TTE was not different between the two conditions (p = .755). A deliberate strategy to alternate between foot strike patterns did not reduce the extent of fatigue during prolonged graded running. We suggest that it is not the ability to switch between foot strike patterns that minimises fatigue; rather the ability to adapt foot strike pattern to the terrain and therefore a better running technique.


Subject(s)
Foot Joints/physiology , Gait , Muscle Fatigue , Muscle, Skeletal/physiology , Oxygen Consumption , Running , Biomechanical Phenomena , Humans , Male
7.
Med Sci Sports Exerc ; 52(4): 884-891, 2020 04.
Article in English | MEDLINE | ID: mdl-31652248

ABSTRACT

INTRODUCTION: Soft tissue vibrations can generate discomfort and may necessitate a greater energy demand to preserve an efficient motion in running. Vibration damping is thus of interest from a comfort and performance standpoint. Our purpose was to assess whether changes in midsole material affect the properties of (a) soft tissue vibrations and (b) myoelectric activity. METHODS: Two midsole conditions were compared. The control condition corresponded to a full ethylene-vinyl acetate foam midsole. The experimental condition was a bimaterial midsole with a material combination of viscous and viscoelastic materials. Twelve participants ran on an indoor track in both conditions while recording the longitudinal acceleration and the EMG activity of vastus medialis (VM) and gastrocnemius medialis (GM). Wavelet transforms were performed for EMG and acceleration signals to assess the intensity of the muscle activity at low and high frequencies (37-128 and 170-395 Hz, respectively) and to calculate the damping coefficient (D) for soft tissue vibrations. The soft tissue vibrations were also characterized by the peak of acceleration (apeak), the frequency of the power peak (fpeak), and the power of the soft tissue vibrations (PSD[8-55]). RESULTS: The variables apeak and PSD[8-55] decreased for VM and GM in the viscous condition. Before heel strike, low-frequency EMG activity decreased for VM, and high-frequency EMG activity tended to decrease for GM in the viscous condition. The damping D was reduced only for VM, and fpeak was unchanged. CONCLUSIONS: A more viscous midsole substantially reduced the amplitude of soft tissue vibrations, but not their frequency. Looking at individual results, it was noted that muscle activity was tuned in response to the acceleration input, and that the damping of soft tissue vibrations was affected by the intensity of muscle activity.


Subject(s)
Connective Tissue/physiology , Equipment Design , Gait/physiology , Muscle, Skeletal/physiology , Running/physiology , Shoes , Vibration , Acceleration , Adult , Biomechanical Phenomena , Electromyography , Heel/physiology , Humans , Male , Materials Testing , Toes/physiology
8.
Sports Biomech ; 19(1): 120-140, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31456487

ABSTRACT

Dynamic stability of locomotion plays an important role in running injuries, particularly during trail running where ankle injuries occur frequently. Several studies have investigated dynamic stability of locomotion using wearable accelerometer measurements. However, no study has reviewed how dynamic stability of locomotion is quantified using accelerometry. Therefore, the present review aims to synthetise the methods and findings of studies investigating stability related parameters measured by accelerometry, during locomotion on various surfaces, and among asymptomatic participants. A systematic search of studies associated with locomotion was conducted. Only studies including assessment of dynamic stability parameters based on accelerometry, including at least one group of asymptomatic participants, and conditions that occur during trail running were considered relevant for this review. Consequently, all retrieved studies used a non-obstructive portable accelerometer or an inertial measurement unit. Fifteen studies used a single tri-axial accelerometer placed above the lumbar region allowing outdoor recordings. From trunk accelerations, a combination of index of cycle repeatability and signal dispersion can adequately be used to assess dynamic stability. However, as most studies included indoor conditions, studies addressing the biomechanics of trail running in outdoor conditions are warranted.


Subject(s)
Accelerometry/methods , Running/physiology , Walking/physiology , Biomechanical Phenomena , Environment , Gait/physiology , Humans , Risk Factors , Running/injuries , Walking/injuries
9.
Eur J Sport Sci ; 20(6): 756-766, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31549912

ABSTRACT

Abstract We sought to examine the effect of step length manipulation on energy absorption and impact attenuation during graded running. Nineteen runners (10F, 9M) ran on an instrumented treadmill at three step lengths (preferred and ±10% preferred) at each of five grades (0°, ±5°, and ±10°) while 3D motion data were captured. Speed was held constant at 3.33 m/s and step length was manipulated by syncing cadence to a metronome. Manipulating step length altered energy absorption (p ≤ 0.002) and impact attenuation (p < 0.0001) across all grades. Energy absorption at the knee joint was most responsive to step length manipulations [Δ range (±10%SL-PrefSL) = 0.076-0.126 J/kg, p < 0.0001], followed by the ankle (Δ range = 0.026-0.100 J/kg, p = 0.001) and hip (Δ range = 0.008-0.018 J/kg, p < 0.006). Shortening step length reduced knee joint energy absorption at all grades with the smallest effect observed during uphill running (Δ ≥ -0.053 J/kg), while large reductions occurred during level (Δ = -0.096 J/kg) and downhill running (Δ ≥ -0.108 J/kg). Increasing step length resulted in greater knee joint energy absorption (p ≤ 0.037) across all grades of running. Impact attenuation was greatest at long step lengths (Δ = 2.708) and lowest at short step lengths (Δ = -2.061), compared to preferred. Overall, Step length influenced the energy absorption and impact attenuation characteristics of the lower extremity during level and graded running. Adopting a shorter step length may be a useful intervention to reduce knee joint loading, particularly during downhill or level running. Elongating step length placed a greater demand on the lower extremity joints, which may expedite the development of neuromuscular fatigue.


Subject(s)
Ankle Joint/physiology , Energy Transfer/physiology , Gait/physiology , Hip Joint/physiology , Knee Joint/physiology , Running/physiology , Acceleration , Accelerometry/methods , Adult , Analysis of Variance , Biomechanical Phenomena , Female , Humans , Male
10.
Gait Posture ; 70: 355-360, 2019 05.
Article in English | MEDLINE | ID: mdl-30952109

ABSTRACT

BACKGROUND: Bone fatigue resistance and more generally the ability to dissipate the stress sustained in dynamic tasks are partly affected by tissue properties. Men and women demonstrate substantial differences in body composition. RESEARCH QUESTION: To assess whether gender, as a function of body composition, affects impact-related parameters in running. METHODS: A qualitative study has been conducted. Twelve females and eighteen males performed four 2-min running trials at 2.8 m∙s-1, 3.3 m∙s-1, 3.9 m∙s-1, and 4.4 m∙s-1 while recording axial and transverse tibial acceleration. Peak acceleration and power spectral density within the impact-related frequency range (vibration content) were measured. Bone mineral content, fat mass, lean mass, and muscle mass were assessed using an impedance meter. Two-way (gender × speed) ANOVAs were computed. Multiple linear regressions were then used to assess the magnitude of the effect of body composition indicators on impact-related parameters. RESULTS: Significant gender and speed effects were observed. Females and high running speeds were associated with greater peak acceleration and vibration content at the tibia. Small interactions were observed between muscle mass and axial peak acceleration and vibration content, and between bone mineral content and transverse peak acceleration and vibration content, and axial vibration content. SIGNIFICANCE: Women demonstrated greater mechanical stress than men during running. High mechanical stress was associated with low bone mineral content and muscle mass. These findings may have implications in the prevention and management of bone overuse injuries in runners.


Subject(s)
Body Composition/physiology , Foot/physiology , Running/physiology , Tibia/physiology , Acceleration , Adult , Cumulative Trauma Disorders/prevention & control , Female , Humans , Male , Running/injuries , Sex Factors
11.
Sports Med ; 47(4): 615-629, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27501719

ABSTRACT

Most running studies have considered level running (LR), yet the regulation of locomotor behaviour during uphill (UR) and downhill (DR) running is fundamental to increase our understanding of human locomotion. The purpose of this article was to review the existing literature regarding biomechanical, neuromuscular and physiological adaptations during graded running. Relative to LR, UR is characterized by a higher step frequency, increased internal mechanical work, shorter swing/aerial phase duration, and greater duty factor, while DR is characterized by increased aerial time, reduced step frequency and decreased duty factor. Grade also modifies foot strike patterns, with a progressive adoption of a mid- to fore-foot strike pattern during UR, and rear-foot strike patterns during DR. In UR, lower limb muscles perform a higher net mechanical work compared to LR and DR to increase the body's potential energy. In DR, energy dissipation is generally prevalent compared to energy generation. The increased demands for work as running incline increases are met by an increase in power output at all joints, particularly the hip. This implies that UR requires greater muscular activity compared to LR and DR. Energy cost of running (C r) linearly increases with positive slope but C r of DR decreases until a minimum slope is reached at -20 %, after which C r increases again. The effects of slope on biomechanics, muscle contraction patterns and physiological responses have important implications for injury prevention and success of athletes engaged in graded running competitions.


Subject(s)
Joints/physiology , Muscle, Skeletal/physiology , Running/physiology , Biomechanical Phenomena , Foot , Humans , Muscle Contraction
12.
Gait Posture ; 49: 448-450, 2016 09.
Article in English | MEDLINE | ID: mdl-27541337

ABSTRACT

External ankle supports, such as ankle braces, may improve postural stability by stimulating cutaneous receptors. It remains unknown whether these supports have an effect on the posture central regulation. The aim of this study was to determine the effect of wearing a soft ankle brace on soleus H-reflex amplitude and presynaptic inhibition during standing. Sixteen subjects stood on a rigid floor with their eyes opened, either barefoot or wearing a soft ankle brace. H-reflex amplitude was measured on the soleus muscle by stimulating the tibial nerve electrically. Modulation of presynaptic inhibition was assessed by conditioning the H-reflex with fibular nerve (D1 inhibition) and femoral nerve (heteronymous facilitation) electrical stimulations. The unconditioned H-reflex amplitude was significantly greater when wearing the ankle brace than barefoot, whereas D1 and HF conditioned soleus H-reflex did not differ significantly between bracing conditions. These results suggest that the ankle brace increased the soleus motoneuron excitability without altering presynaptic mechanisms, potentially because of increased cutaneous mechanoreceptors afferent signals provided by the soft ankle brace.


Subject(s)
Ankle Joint/physiology , Braces , H-Reflex/physiology , Posture/physiology , Adult , Ankle , Electric Stimulation , Electromyography , Equipment Design , Humans , Male , Mechanoreceptors/physiology , Motor Neurons/physiology , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Tibial Nerve/physiology , Young Adult
13.
Eur J Appl Physiol ; 116(10): 1859-73, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27456477

ABSTRACT

Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.


Subject(s)
Muscle Contraction/physiology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Physical Exertion/physiology , Running/physiology , Humans , Task Performance and Analysis
14.
Med Sci Sports Exerc ; 48(10): 1976-84, 2016 10.
Article in English | MEDLINE | ID: mdl-27183120

ABSTRACT

PURPOSE: This study aimed to examine the effects of footwear and neuromuscular fatigue induced by short distance trail running (TR) on running economy (RE) and biomechanics in well-trained and traditionally shod runners. METHODS: RE, vertical and leg stiffness (Kvert and Kleg), as well as foot strike angle were measured from two 5-min treadmill running stages performed at a speed of 2.5 (with 10% grade, uphill running) and 2.77 m·s (level running) before and after an 18.4-km TR exercise (approximately 90% of maximal heart rate) in runners wearing minimalist shoes (MS), MS plus added mass (MSm), or traditional shoes (TS). Maximal voluntary contraction torque of knee extensors and perceived muscle pain were also evaluated before and after TR. RESULTS: Maximal voluntary contraction values decreased after TR in all footwear conditions (P < 0.001), indicating the occurrence of neuromuscular fatigue. In the nonfatigued condition, runners exhibited a better RE only during level running in MS and MSm (i.e., combined effects of shoe mass and midsole geometry), in association with significant decreases in foot strike angle (P < 0.05). However, no significant difference in RE was observed between shod conditions after TR during either uphill or level running. Decreases in both Kvert/Kleg and foot strike angle were more pronounced during running in MS and MSm (P < 0.05) compared with TS, whatever the period. Calf pain increased after TR when wearing MS and MSm compared with TS (P < 0.05). CONCLUSIONS: These findings indicated specific alterations in RE and biomechanics over time during the MS and MSm conditions compared with the TS condition. Future studies are warranted to evaluate the relationship between RE and footwear with fatigue in experienced minimally shod runners.


Subject(s)
Muscle Fatigue/physiology , Running/physiology , Shoes , Adult , Biomechanical Phenomena , Foot/physiology , Gait/physiology , Humans , Knee/physiology , Leg/physiology , Male , Muscle Contraction/physiology , Myalgia/physiopathology
15.
J Biomech ; 49(9): 1765-1771, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27087676

ABSTRACT

Trail runners are exposed to a high number of shocks, including high-intensity shocks on downhill sections leading to greater risk of osseous overuse injury. The type of foot strike pattern (FSP) is known to influence impact severity and lower-limb kinematics. Our purpose was to investigate the influence of FSP on axial and transverse components of shock acceleration and attenuation during an intense downhill trail run (DTR). Twenty-three trail runners performed a 6.5-km DTR (1264m of negative elevation change) as fast as possible. Four tri-axial accelerometers were attached to the heel, metatarsals, tibia and sacrum. Accelerations were continuously recorded at 1344Hz and analyzed over six sections (~400 steps per subject). Heel and metatarsal accelerations were used to identify the FSP. Axial, transverse and resultant peak accelerations, median frequencies and shock attenuation within the impact-related frequency range (12-20Hz) were assessed between tibia and sacrum. Multiple linear regressions showed that anterior (i.e. forefoot) FSPs were associated with higher peak axial acceleration and median frequency at the tibia, lower transverse median frequencies at the tibia and sacrum, and lower transverse peak acceleration at the sacrum. For resultant acceleration, higher tibial median frequency but lower sacral peak acceleration were reported with forefoot striking. FSP therefore differently affects the components of impact shock acceleration. Although a forefoot strike reduces impact severity and impact frequency content along the transverse axis, a rearfoot strike decreases them in the axial direction. Globally, the attenuation of axial and resultant impact-related vibrations was improved using anterior FSPs.


Subject(s)
Foot/physiology , Running/physiology , Acceleration , Adult , Biomechanical Phenomena , Humans , Male , Metatarsal Bones/physiology , Middle Aged , Sacrum/physiology , Tibia/physiology , Vibration
16.
J Foot Ankle Res ; 9: 9, 2016.
Article in English | MEDLINE | ID: mdl-26958080

ABSTRACT

BACKGROUND: Ankle movements can be partially encoded by cutaneous afferents. However, little is known about the central integration of these cutaneous signals, and whether individual differences exist in this integration. The aim of this study was to determine whether the effect of cutaneous stimulation at the ankle would differ depending on the participants' preferred sensory strategy appraised by relative proprioceptive weighting (RPw). METHODS: Forty-seven active young individuals free of lower-limb injury stood on a force platform either barefoot or wearing a custom-designed bootee. Vibrations (60 Hz, 0.5 mm) were applied either to the peroneal tendons or to the lumbar paraspinal muscles. RESULTS: The barefoot RPw was strongly negatively correlated to the absolute change in RPw measured in the bootee condition (r = -0.81, P < 0.001). Participants were then grouped depending on their barefoot RPw value. The RPw was significantly higher in the bootee condition than in the barefoot condition only for participants with low barefoot RPw. CONCLUSIONS: The external cutaneous stimulation given by the bootee increased the weight of ankle proprioceptive signals only for participants with low barefoot RPw. This result confirmed that optimization of the ankle proprioceptive signals provided by cutaneous afferent stimulation has a differential effect depending on the participants' preferred sensory strategy.


Subject(s)
Ankle/physiology , Electric Stimulation , Proprioception/physiology , Shoes , Adult , Ankle/innervation , Female , Humans , Male , Paraspinal Muscles/innervation , Paraspinal Muscles/physiology , Tendons/innervation , Tendons/physiology , Vibration
17.
Eur J Sport Sci ; 16(4): 427-32, 2016.
Article in English | MEDLINE | ID: mdl-26406359

ABSTRACT

Non-circular chainrings alter the crank velocity profile over a pedalling cycle. The aim of this study was to investigate the effect of this altered crank velocity profile on the aerobic performance compared to a circular chainring (CC). Ten male non-cyclists performed two incremental maximal tests at 80 rpm on a cycle ergometer: one with a circular (Shimano) and the other with a non-circular chainring Osymetric® (Somovedi), at least 50 h apart. Each test started with a workload of 100 W lasting 3 min. During the first 12 min, the workload was increased by 30 W every 3 min. Thereafter, the workload was increased by 30 W every 2 min until exhaustion. The power output, the intra-cycle crank angular velocity and the physiological parameters were monitored continuously, averaged over the last 30 s of each increment and at exhaustion, and compared for the two chainrings. Results showed a higher maximal aerobic power attained with the non-circular chainring (362.6 ± 37.9 vs. 338.8 ± 32.6 W, p < .001; moderate effect), which could be explained by a significantly lower energy expenditure during the first increment at 100 W. It could be hypothesised that the use of the non-circular chainring allowed saving a small part of energy expenditure throughout the test, allowing the exhaustion of the subject at a higher increment for a similar maximal energy expenditure, in comparison with a CC. Although this improvement is obtained only for non-cyclists, it allowed highlighting the link between cycling equipment modifying the pedalling motion and physiological responses.


Subject(s)
Athletic Performance/physiology , Bicycling/physiology , Energy Metabolism , Equipment Design , Ergometry , Humans , Male , Oxygen Consumption , Young Adult
18.
J Biomech ; 47(7): 1588-93, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24679708

ABSTRACT

Identifying foot strike patterns in running is an important issue for sport clinicians, coaches and footwear industrials. Current methods allow the monitoring of either many steps in laboratory conditions or only a few steps in the field. Because measuring running biomechanics during actual practice is critical, our purpose is to validate a method aiming at identifying foot strike patterns during continuous field measurements. Based on heel and metatarsal accelerations, this method requires two uniaxial accelerometers. The time between heel and metatarsal acceleration peaks (THM) was compared to the foot strike angle in the sagittal plane (αfoot) obtained by 2D video analysis for various conditions of speed, slope, footwear, foot strike and state of fatigue. Acceleration and kinematic measurements were performed at 1000Hz and 120Hz, respectively, during 2-min treadmill running bouts. Significant correlations were observed between THM and αfoot for 14 out of 15 conditions. The overall correlation coefficient was r=0.916 (P<0.0001, n=288). The THM method is thus highly reliable for a wide range of speeds and slopes, and for all types of foot strike except for extreme forefoot strike during which the heel rarely or never strikes the ground, and for different footwears and states of fatigue. We proposed a classification based on THM: FFS<-5.49ms

Subject(s)
Foot/physiology , Running/physiology , Acceleration , Adolescent , Adult , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Young Adult
19.
Eur J Sport Sci ; 13(5): 468-74, 2013.
Article in English | MEDLINE | ID: mdl-24050463

ABSTRACT

The aim of this study was to investigate the effect of using poles on foot-ground interaction during trail running with slopes of varying incline. Ten runners ran on a loop track representative of a trail running field situation with uphill (+9°), level and downhill (-6°) sections at fixed speed (3.2 m.s(-1)). Experimental conditions included running with (WP) and without (NP) the use of poles for each of the three slopes. Several quantitative and temporal foot-ground interaction parameters were calculated from plantar pressure data measured with a portable device. Using poles induced a decrease in plantar pressure intensity even when the running velocity stayed constant. However, the localisation and the magnitude of this decrease depended on the slope situations. During WP level running, regional analysis of the foot highlighted a decrease of the force time integral (FTI) for absolute (FTIabs; -12.6%; P<0.05) and relative values (FTIrel; -14.3%; P<0.05) in the medial forefoot region. FTIabs (-14.2%; P<0.05) and duration of force application (Δt; -13.5%; P<0.05) also decreased in the medial heel region when WP downhill running. These results support a facilitating effect of pole use for propulsion during level running and for the absorption phase during downhill running.


Subject(s)
Athletes , Foot/physiology , Gait/physiology , Running/physiology , Stress, Mechanical , Acceleration , Adult , Biomechanical Phenomena , Humans , Male , Pressure , Reference Values
20.
Eur J Appl Physiol ; 113(8): 2077-90, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23584279

ABSTRACT

Impact reduction has become a factor of interest in the prevention of running-related injuries such as stress fractures. Currently, the midfoot strike pattern (MFS) is thought as a potential way to decrease impact. The purpose was to test the effects of two long-term interventions aiming to reduce impact during running via a transition to an MFS: a foot strike retraining versus a low-drop/low-heel height footwear. Thirty rearfoot strikers were randomly assigned to two experimental groups (SHOES and TRAIN). SHOES progressively wore low-drop/low-heel height shoes and TRAIN progressively adopted an MFS, over a 3-month period with three 30-min running sessions per week. Measurement sessions (pre-training, 1, 2 and 3 months) were performed during which subjects were equipped with three accelerometers on the shin, heel and metatarsals, and ran for 15 min on an instrumented treadmill. Synchronized acceleration and vertical ground reaction force signals were recorded. Peak heel acceleration was significantly lower as compared to pre-training for SHOES (-33.5 ± 12.8 % at 2 months and -25.3 ± 18.8 % at 3 months, p < 0.001), and so was shock propagation velocity (-12.1 ± 9.3 %, p < 0.001 at 2 months and -11.3 ± 4.6 %, p < 0.05 at 3 months). No change was observed for TRAIN. Important inter-individual variations were noted in both groups and reported pains were mainly located at the shin and calf. Although it induced reversible pains, low-drop/low-heel height footwear seemed to be more effective than foot strike retraining to attenuate heel impact in the long term.


Subject(s)
Foot Orthoses , Running/physiology , Adolescent , Athletic Injuries/prevention & control , Biomechanical Phenomena , Female , Humans , Male , Protective Devices , Running/injuries , Shoes/classification , Sports Equipment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...