Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 117(7): 1055-67, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18696043

ABSTRACT

The most common and effective way to control phoma stem canker (blackleg) caused by Leptosphaeria maculans in oilseed rape (Brassica napus) is by breeding resistant cultivars. Specific resistance genes have been identified in B. napus and related species but in some B. napus cultivars resistance is polygenic [mediated by quantitative trait loci (QTL)], postulated to be race non-specific and durable. The genetic basis of quantitative resistance in the French winter oilseed rape 'Darmor', which was derived from 'Jet Neuf', was previously examined in two genetic backgrounds. Stable QTL involved in blackleg resistance across year and genetic backgrounds were identified. In this study, near isogenic lines (NILs) were produced in the susceptible background 'Yudal' for four of these QTL using marker-assisted selection. Various strategies were used to develop new molecular markers, which were mapped in these QTL regions. These were used to characterize the length and homozygosity of the 'Darmor-bzh' introgressed segment in the NILs. Individuals from each NIL were evaluated in blackleg disease field trials and assessed for their level of stem canker in comparison to the recurrent line 'Yudal'. The effect of QTL LmA2 was clearly validated and to a lesser extent, QTL LmA9 also showed an effect on the disease level. This work provides valuable material that can be used to study the mode of action of genetic factors involved in L. maculans quantitative resistance.


Subject(s)
Ascomycota , Brassica napus/genetics , Quantitative Trait Loci , Arabidopsis/genetics , Brassica napus/microbiology , Chromosome Mapping , Genetic Markers , Immunity, Innate/genetics , Phenotype , Plant Diseases/microbiology
2.
Theor Appl Genet ; 113(7): 1331-45, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16960716

ABSTRACT

In oilseed rape (Brassica napus L.) like in most oleaginous crops, seed oil content is the main qualitative determinant that confers its economic value to the harvest. Increasing seed oil content is then still an important objective in oilseed rape breeding. In the objective to get better knowledge on the genetic determinism of seed oil content, a genetic study was undertaken in two genetic backgrounds. Two populations of 445 and a 242 doubled haploids (DH) derived from the crosses "Darmor-bzh" x "Yudal" (DY) and "Rapid" x "NSL96/25" (RNSL), respectively, were genotyped and evaluated for oil content in different trials. QTL mapping in the two populations indicate that additive effects are the main factors contributing to variation in oil content. A total of 14 and 10 genomic regions were involved in seed oil content in DY and RNSL populations, respectively, of which five and two were consistently revealed across the three trials performed for each population. Most of the QTL detected were not colocalised to QTL involved in flowering time. Few epistatic QTL involved regions that carry additive QTL in one or the other population. Only one QTL located on linkage group N3 was potentially common to the two populations. The comparisons of the QTL location in this study and in the literature showed that: (i) some of the QTL were more consistently revealed across different genetic backgrounds. The QTL on N3 was revealed in all the studies and the QTL on N1, N8 and N13 were revealed in three studies out of five, (ii) some of the QTL were specific to one genetic background with potentially some original alleles, (iii) some QTL were located in homeologous regions, and (iv) some of the regions carrying QTL for oil content in oilseed rape and in Arabidopsis could be collinear. These results show the possibility to combine favourable alleles at different QTL to increase seed oil content and to use Arabidopsis genomic data to derive markers for oilseed rape QTL and identify candidate genes, as well as the interest to combine information from different segregating populations in order to build a consolidated map of QTL involved in a specific trait.


Subject(s)
Brassica napus/genetics , Chromosome Mapping , Phenotype , Plant Oils/analysis , Quantitative Trait Loci , Agriculture , Breeding/methods , Crosses, Genetic
3.
Theor Appl Genet ; 111(4): 736-46, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15965648

ABSTRACT

A major objective of breeders using the Ogu-INRA cytoplasmic male sterility (cms) system in rapeseed (Brassica napus L.) is to obtain double low restorer lines with a shorter introgression and a good agronomic value. The development of low glucosinolate content (low GC) restorer lines often occurs through the deletion of a part of the introgression. One of these lines has lost the radish Pgi-2 allele expression, without recovering that of the rapeseed Pgi-2 allele. This line shows a defect in the meiotic transmission of the restorer gene Rfo and a very poor agronomic value. We initiated a programme to force non-spontaneous recombination between this Rfo-carrying introgression and the rapeseed homologous chromosome from a low GC B. napus line. Gamma ray irradiation was used to induce chromosome breakage just prior meiosis aiming at just such a recombination. Low GC cms plants were crossed with the pollen of irradiated plants that were heterozygous for this introgression. The F(2) families were scored for their vigour, transmission rate of Rfo and female fertility. One family of plants, R2000, showed an improved behaviour for these three traits. This family presented a unique combination of molecular markers when compared to other rapeseed restorers analysed, which suggests that the recombination event allowed the recovery of B. oleracea genetic information that was originally replaced by the radish introgression in the original restorers. This resulted in a duplicated region (originating from radish and B. oleracea) on the chromosome carrying the introgression in the R2000 family.


Subject(s)
Brassica napus/genetics , Breeding/methods , Gene Transfer Techniques , Phenotype , Crosses, Genetic , DNA Primers , Gamma Rays , Genetic Markers/genetics , Reproduction/genetics
4.
Phytopathology ; 94(6): 578-83, 2004 Jun.
Article in English | MEDLINE | ID: mdl-18943482

ABSTRACT

ABSTRACT Two types of genetic resistance to Leptosphaeria maculans usually are distinguished in Brassica napus: qualitative, total resistance expressed at the seedling stage and quantitative, partial resistance expressed at the adult plant stage. The latter is under the control of many genetic factors that have been mapped through quantitative trait loci (QTL) studies using 'Darmor' resistance. The former usually is ascribed to race-specific resistance controlled by single resistance to L. maculans (Rlm) genes. Three B. napus-originating specific Rlm genes (Rlm1, Rlm2, and Rlm4) previously were characterized. Here, we report on the genetic identification of two novel resistance genes, Rlm3 and Rlm7, corresponding to the avirulence genes AvrLm3 and AvrLm7. The identification of a novel L. maculans- B. napus specific interaction allowed the detection of another putative new specific resistance gene, Rlm9. The resistance genes were mapped in two genomic regions on LG10 and LG16 linkage groups. A cluster of five resistance genes (Rlm1, Rlm3, Rlm4, Rlm7, and Rlm9) was strongly suggested on LG10. The relation between all these specific resistance genes and their potential role in adult-plant field resistance is discussed. These two Rlm-carrying regions do not correspond to major QTL for Darmor quantitative resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...