Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 2(2): e248, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17327912

ABSTRACT

Melanesian populations are known for their diversity, but it has been hard to grasp the pattern of the variation or its underlying dynamic. Using 1,223 mitochondrial DNA (mtDNA) sequences from hypervariable regions 1 and 2 (HVR1 and HVR2) from 32 populations, we found the among-group variation is structured by island, island size, and also by language affiliation. The more isolated inland Papuan-speaking groups on the largest islands have the greatest distinctions, while shore dwelling populations are considerably less diverse (at the same time, within-group haplotype diversity is less in the most isolated groups). Persistent differences between shore and inland groups in effective population sizes and marital migration rates probably cause these differences. We also add 16 whole sequences to the Melanesian mtDNA phylogenies. We identify the likely origins of a number of the haplogroups and ancient branches in specific islands, point to some ancient mtDNA connections between Near Oceania and Australia, and show additional Holocene connections between Island Southeast Asia/Taiwan and Island Melanesia with branches of haplogroup E. Coalescence estimates based on synonymous transitions in the coding region suggest an initial settlement and expansion in the region at approximately 30-50,000 years before present (YBP), and a second important expansion from Island Southeast Asia/Taiwan during the interval approximately 3,500-8,000 YBP. However, there are some important variance components in molecular dating that have been overlooked, and the specific nature of ancestral (maternal) Austronesian influence in this region remains unresolved.


Subject(s)
Black People/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Base Sequence , Emigration and Immigration , Ethnicity/genetics , Founder Effect , Gene Flow , Haplotypes/genetics , Humans , Melanesia , Molecular Sequence Data , Native Hawaiian or Other Pacific Islander/genetics , Oceania/ethnology , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
2.
Mol Biol Evol ; 22(6): 1506-17, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15814828

ABSTRACT

Modern humans have occupied New Guinea and the nearby Bismarck and Solomon archipelagos of Island Melanesia for at least 40,000 years. Previous mitochondrial DNA (mtDNA) studies indicated that two common lineages in this region, haplogroups P and Q, were particularly diverse, with the coalescence for P considered significantly older than that for Q. In this study, we expand the definition of haplogroup Q so that it includes three major branches, each separated by multiple mutational distinctions (Q1, equivalent to the earlier definition of Q, plus Q2 and Q3). We report three whole-mtDNA genomes that establish Q2 as a major Q branch. In addition, we describe 314 control region sequences that belong to the expanded haplogroups P and Q from our Southwest Pacific collection. The coalescence dates for the largest P and Q branches (P1 and Q1) are similar to each other (approximately 50,000 years old) and considerably older than prior estimates. Newly identified Q2, which was found in Island Melanesian samples just to the east, is somewhat younger by more than 10,000 years. Our coalescence estimates should be more reliable than prior ones because they were based on significantly larger samples as well as complete mtDNA-coding region sequencing. Our estimates are roughly in accord with the current suggested dates for the first settlement of New Guinea-Sahul. The phylogeography of P and Q indicates almost total (female) isolation of ancient New Guinea-Island Melanesia from Australia that may have existed from the time of the first settlement. While Q subsequently diversified extensively in New Guinea-Island Melanesia, it has not been found in Australia. The only shared mtDNA haplogroup between Australia and New Guinea identified to date remains one minor branch of P.


Subject(s)
Biological Evolution , DNA, Mitochondrial/genetics , Evolution, Molecular , Australia , Ethnicity , Female , Genetic Variation , Genetics, Population , Genome , Geography , Haplotypes , Humans , Male , Melanesia , Models, Genetic , Molecular Sequence Data , New Guinea , Phylogeny , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...