Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(10): 1767-1775, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38417034

ABSTRACT

The low-dimensional quantum-magnet, linarite, PbCuS4(OH)2, has been investigated using terahertz (THz) spectroscopy coupled with detailed density functional theory (DFT) calculations in order to explore the effects of the temperature on its lattice vibrations. Linarite is characterized by largely isolated CuO chains propagating along the crystallographic b-axis, which at very low temperatures are responsible for exotic, quasi-1D magnetism in this material. To better understand the synergy between the structural bonds and lattice oscillations that contribute to these chains, polarized THz spectroscopic measurements were performed. Consolidating these results with detailed DFT calculations has revealed that the anisotropic vibrational motion for the THz modes is correlated with extreme motion associated with the crystallographic b-axis. An unexpected feature observed in the infrared spectrum is attributed to subtle lattice distortions which break the centro-symmetry in linarite at high temperatures. This phenomenon has not previously been observed in linarite and likely results from anharmonicity in lattice oscillations.

2.
Phys Chem Chem Phys ; 25(12): 8882-8890, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36916444

ABSTRACT

The interaction between rare earth and iron spins in rare earth orthoferrites leads to remarkable phenomena, such as the spin-flip process. This is despite the rare earth spins not being magnetically ordered. Instead, they are polarized by the ordered iron spins. The interaction between the two spin families is not well understood. This study reports the temperature dependence of the net magnetic moment for rare earth spins, by measuring the overall magnetization for ErFeO3 and NdFeO3 single crystals. The obtained temperature dependence can be described well using a model based on the mean field theory, giving tanh(const./T) temperature dependence. This functional dependence is not disrupted by the spin-flip transition as the crystals are cooled.

3.
Phys Chem Chem Phys ; 24(17): 10408-10419, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35441620

ABSTRACT

A volume-constraint method is presented as a means to capture the influence of thermal expansion on the low-frequency vibrations in molecular crystals. In particular, the room-temperature terahertz absorption spectra of L-tartaric acid, α-lactose monohydrate, and α-para-aminobenzoic acid (PABA) have been simulated using dispersion-corrected, solid-state density functional theory (DFT-D). By comparing the normal modes obtained with a unit cell optimised without constraints to those obtained with a unit cell optimised while constrained to keep its experimental volume, wholesale improvements to the resultant spectrum is achieved when using the constrained geometry by inhibiting cell contraction. These improvements are demonstrated over a range of popular density functionals and basis sets up to triple-zeta complexity. A correlation method is then presented as a means to quantitatively compare the vibrational pattern of normal modes obtained from both unit cells. This analysis reveals that thermal expansion can effect the character and relative frequency of normal modes, with the choice of geometry ultimately affecting the assignment of the experimental absorptions. The sensibility of using the experimental volume as an approximation is then discussed, where it is speculated that large basis sets or hybrid functionals are necessary to ensure that the thermal expansion effect is not overestimated. The low-frequency absorption spectrum of PABA is then fully characterised using the PBE-D3BJ/6-311G(2d,2p) method.

4.
Sci Total Environ ; 832: 155021, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35390373

ABSTRACT

Continual application of nitrogen (N), phosphorous (P) and potassium (K) fertilizer may not return a profit to farmers due to the costs of application and the loss of NPK from soil in various ways. Thus, a combination of NPK granule with a porous biochar (termed here as BNPK) appears to offer multiple benefits resulting from the excellent properties of biochar. Given the lack of information on the properties of NPK and BNPK fertilizers, it is necessary to investigate the characteristics of both to achieve a good understanding of why BNPK granule is superior to NPK granule. Therefore, this study aims to investigate the characteristics of a maize straw biochar mixed with NPK granule, before and after application to soil, and compare them to those for a commercial NPK granule. The BNPK granule, with a greater surface area and porosity, showed a higher capacity to store and donate electrons than the NPK granule. Relatively lower concentrations of Ca, P, K, Si and Mg were dissolved from the BNPK, indicating the ability of the BNPK granule to maintain these mineral elements and reduce dissolution rate. To study the nutrient storage mechanism of the BNPK granule in the soil, short- and long-term leaching experiments were conducted. During the experiments, organo-mineral clusters, comprising C, P, K, Si, Al and Fe, were formed on the surface and inside the biochar pores. However, BNPK was not effective in reducing N leaching, in the absence of plants, in a red chromosol soil.


Subject(s)
Charcoal , Soil , Fertilizers/analysis , Nitrogen/analysis
5.
Phys Chem Chem Phys ; 23(9): 5415-5421, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33646225

ABSTRACT

The dynamics of the magnetic moment reversal is studied for ErFeO3 and NdFeO3 single crystals. The reversal occurs at 41 and 5.1 K for ErFeO3 and NdFeO3, respectively, at a field of 300 Oe. The dynamics of the magnetization reversal process depends on the temperature at which the reversal occurs. The reversal is abrupt if the thermal energy is far higher than the energy of Zeeman splitting of the rare earth ion levels by internal fields, as observed for ErFeO3. A gradual magnetization reversal occurs for NdFeO3 over 64 s, when the thermal energy at the temperature of the reversal is well below the Zeeman splitting energy of Nd3+ spins. A mechanism for this gradual magnetization reversal is proposed in terms of the thermal re-population of Zeeman doublets of Nd3+ ions, the splitting energy of which continuously changes during the magnetization reversal.

6.
Sci Rep ; 11(1): 159, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420245

ABSTRACT

Application of iron (Fe)- and silica (Si)-enhanced biochar compound fertilisers (BCF) stimulates rice yield by increasing plant uptake of mineral nutrients. With alterations of the nutrient status in roots, element homeostasis (e.g., Fe) in the biochar-treated rice root was related to the formation of biominerals on the plaque layer and in the cortex of roots. However, the in situ characteristics of formed biominerals at the micron and sub-micron scale remain unknown. In this study, rice seedlings (Oryza sativa L.) were grown in paddy soil treated with BCF and conventional fertilizer, respectively, for 30 days. The biochar-induced changes in nutrient accumulation in roots, and the elemental composition, distribution and speciation of the biomineral composites formed in the biochar-treated roots at the micron and sub-micron scale, were investigated by a range of techniques. Results of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) showed that biochar treatment significantly increased concentrations of nutrients (e.g., Fe, Si, and P) inside the root. Raman mapping and vibrating sample magnetometry identified biochar particles and magnetic Fe nanoparticles associated with the roots. With Fe plaque formation, higher concentrations of FeOx- and FeOxH- anions on the root surface than the interior were detected by time-of-flight secondary ionization mass spectrometry (ToF-SIMS). Analysis of data from scanning electron microscopy energy-dispersive spectroscopy (SEM-EDS), and from scanning transmission electron microscopy (STEM) coupled with EDS or energy electron loss spectroscopy (EELS), determined that Fe(III) oxide nanoparticles were accumulated in the crystalline fraction of the plaque and were co-localized with Si and P on the root surface. Iron-rich nanoparticles (Fe-Si nanocomposites with mixed oxidation states of Fe and ferritin) in the root cortex were identified by using aberration-corrected STEM and in situ EELS analysis, confirming the biomineralization and storage of Fe in the rice root. The findings from this study highlight that the deposition of Fe-rich nanocomposites occurs with contrasting chemical speciation in the Fe plaque and cortex of the rice root. This provides an improved understanding of the element homeostasis in rice with biochar-mineral fertilization.


Subject(s)
Charcoal/metabolism , Iron/metabolism , Oryza/growth & development , Plant Roots/metabolism , Silicon Dioxide/metabolism , Biomineralization , Fertilizers/analysis , Oryza/metabolism , Plant Roots/growth & development , Seedlings/growth & development , Seedlings/metabolism , Soil/chemistry
7.
Sci Total Environ ; 713: 136431, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-31958720

ABSTRACT

Biochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone. We investigated the rhizosphere interactions following the addition of an activated wheat straw BCF at an application rates of 0.25% (g·g-1 soil), which could potentially explain the increase of plant biomass (by 67%), herbage N (by 40%) and P (by 46%) uptake in the rice plants grown in the BCF-treated soil, compared to the rice plants grown in the soil with conventional fertilizer alone. Examination of the roots revealed that micron and submicron-sized biochar were embedded in the plaque layer. BCF increased soil Eh by 85 mV and increased the potential difference between the rhizosphere soil and the root membrane by 65 mV. This increased potential difference lowered the free energy required for root nutrient accumulation, potentially explaining greater plant nutrient content and biomass. We also demonstrate an increased abundance of plant-growth promoting bacteria and fungi in the rhizosphere. We suggest that the redox properties of the biochar cause major changes in electron status of rhizosphere soils that drive the observed agronomic benefits.


Subject(s)
Charcoal , Fertilizers , Oryza , Biomass , China , Membrane Potentials , Soil
8.
Sci Total Environ ; 607-608: 184-194, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28689123

ABSTRACT

Recent studies have shown that the pyrolysis of biomass combined with clay can result in both lower cost and increase in plant yields. One of the major sources of nutrients for pasture growth, as well as fuel and building materials in Tibet is yak dung. This paper reports on the initial field testing in a pasture setting in Tibet using yak dung, biochar, and attapulgite clay/yak dung biochars produced at ratios of 10/90 and 50/50 clay to dung. We found that the treatment with attapulgite clay/yak dung (50/50) biochar resulted in the highest pasture yields and grass nutrition quality. We also measured the properties and yields of mixtures of clay/yak dung biochar used in the field trials produced at 400°C and 500°C to help determine a possible optimum final pyrolysis temperature and dung/clay ratio. It was observed that increasing clay content increased carbon stability, overall biochar yield, pore size, carboxyl and ketone/aldehyde functional groups, hematite and ferrous/ferric sulphate/thiosulphate concentration, surface area and magnetic moment. Decreasing clay content resulted in higher pH, CEC, N content and an enhanced ability to accept and donate electrons. The resulting properties were a complex function of both processing temperature and the percentage of clay for the biochars processed at both 400°C and 500°C. It is possible that the increase in yield and nutrient uptake in the field trial is related to the higher concentration of C/O functional groups, higher surface area and pore volume and higher content of Fe/O/S nanoparticles of multiple oxidation state in the 50/50 clay/dung. These properties have been found to significantly increase the abundance of beneficial microorganisms and hence improve the nutrient cycling and availability in soil. Further field trials are required to determine the optimum pyrolysis production conditions and application rate on the abundance of beneficial microorganisms, yields and nutrient quality.

9.
ISME J ; 11(5): 1087-1101, 2017 05.
Article in English | MEDLINE | ID: mdl-28169988

ABSTRACT

Biochar and mineral-enriched biochar (MEB) have been used as soil amendments to improve soil fertility, sequester carbon and mitigate greenhouse gas emissions. Such beneficial outcomes could be partially mediated by soil bacteria, however little is known about how they directly interact with biochar or MEB. We therefore analyzed the diversity and functions of bacterial communities on the surfaces of one biochar and two different MEBs after a 140-day incubation in soil. The results show that the biochar and the MEBs harbor distinct bacterial communities to the bulk soil. Communities on biochar and MEBs were dominated by a novel Gammaproteobacterium. Genome reconstruction combined with electron microscopy and high-resolution elemental analysis revealed that the bacterium generates energy from the oxidation of iron that is present on the surface. Two other bacteria belonging to the genus Thiobacillus and a novel group within the Oxalbacteraceae were enriched only on the MEBs and they had the genetic capacity for thiosulfate oxidation. All three surface-enriched bacteria also had the capacity to fix carbon dioxide, either in a potentially strictly autotrophic or mixotrophic manner. Our results show the dominance of chemolithotrophic processes on the surface of biochar and MEB that can contribute to carbon sequestration in soil.


Subject(s)
Charcoal , Chemoautotrophic Growth , Gammaproteobacteria/metabolism , Oxalobacteraceae/metabolism , Soil Microbiology , Thiobacillus/metabolism , Bacteria/isolation & purification , Carbon Sequestration , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Minerals , Oxalobacteraceae/genetics , Oxalobacteraceae/isolation & purification , Soil , Thiobacillus/genetics , Thiobacillus/isolation & purification
10.
Article in English | MEDLINE | ID: mdl-27690076

ABSTRACT

Mobile phone subscriptions continue to increase across the world, with the electromagnetic fields (EMF) emitted by these devices, as well as by related technologies such as Wi-Fi and smart meters, now ubiquitous. This increase in use and consequent exposure to mobile communication (MC)-related EMF has led to concern about possible health effects that could arise from this exposure. Although much research has been conducted since the introduction of these technologies, uncertainty about the impact on health remains. The Australian Centre for Electromagnetic Bioeffects Research (ACEBR) is a National Health and Medical Research Council Centre of Research Excellence that is undertaking research addressing the most important aspects of the MC-EMF health debate, with a strong focus on mechanisms, neurodegenerative diseases, cancer, and exposure dosimetry. This research takes as its starting point the current scientific status quo, but also addresses the adequacy of the evidence for the status quo. Risk communication research complements the above, and aims to ensure that whatever is found, it is communicated effectively and appropriately. This paper provides a summary of this ACEBR research (both completed and ongoing), and discusses the rationale for conducting it in light of the prevailing science.

11.
Environ Sci Technol ; 50(14): 7706-14, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27284608

ABSTRACT

Dramatic changes in molecular structure, degradation pathway, and porosity of biochar are observed at pyrolysis temperatures ranging from 250 to 550 °C when bamboo biomass is pretreated by iron-sulfate-clay slurries (iron-clay biochar), as compared to untreated bamboo biochar. Electron microscopy analysis of the biochar reveals the infusion of mineral species into the pores of the biochar and the formation of mineral nanostructures. Quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy shows that the presence of the iron clay prevents degradation of the cellulosic fraction at pyrolysis temperatures of 250 °C, whereas at higher temperatures (350-550 °C), the clay promotes biomass degradation, resulting in an increase in both the concentrations of condensed aromatic, acidic, and phenolic carbon species. The porosity of the biochar, as measured by NMR cryoporosimetry, is altered by the iron-clay pretreatment. In the presence of the clay, at lower pyrolysis temperatures, the biochar develops a higher pore volume, while at higher temperature, the presence of clay causes a reduction in the biochar pore volume. The most dramatic reduction in pore volume is observed in the kaolinite-infiltrated biochar at 550 °C, which is attributed to the blocking of the mesopores (2-50 nm pore) by the nonporous metakaolinite formed from kaolinite.


Subject(s)
Carbon , Charcoal/chemistry , Biomass , Minerals , Molecular Structure , Porosity
12.
Eur Biophys J ; 44(8): 647-54, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26184724

ABSTRACT

Liposomal drug delivery systems (LDDSs) are promising tools used for the treatment of diseases where highly toxic pharmacological agents are administered. Currently, destabilising LDDSs by a specific stimulus at a target site remains a major challenge. The bacterial mechanosensitive channel of large conductance (MscL) presents an excellent candidate biomolecule that could be employed as a remotely controlled pore-forming nanovalve for triggered drug release from LDDSs. In this study, we developed superparamagnetic nanoparticles for activation of the MscL nanovalves by magnetic field. Synthesised CoFe2O4 nanoparticles with the radius less than 10 nm were labelled by SH groups for attachment to MscL. Activation of MscL by magnetic field with the nanoparticles attached was examined by the patch clamp technique showing that the number of activated channels under ramp pressure increased upon application of the magnetic field. In addition, we have not observed any cytotoxicity of the nanoparticles in human cultured cells. Our study suggests the possibility of using magnetic nanoparticles as a specific trigger for activation of MscL nanovalves for drug release in LDDSs.


Subject(s)
Escherichia coli Proteins/chemistry , Ion Channels/chemistry , Liposomes/chemistry , Magnetite Nanoparticles/chemistry , Cell Line, Tumor , Cobalt/chemistry , Ferric Compounds/chemistry , Humans , Magnetic Fields , Magnetite Nanoparticles/adverse effects
13.
J Phys Chem A ; 119(2): 263-70, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25565292

ABSTRACT

Previous THz spectroscopy of the TNT explosive precursor, 2,4-dinitrotoluene (DNT), has been restricted to room temperature (apart from one set of data at 11 K). Here, for the first time, we investigate the spectrum as the temperature is systematically varied, from 7 to 245 K. Many new features appear in the spectrum on cooling below room temperature. As well as the five absorption lines observed previously, we observe five additional lines. In addition, a new room-temperature line at 8.52 THz (281 cm(-1)) is observed. Six of the lines red-shift with temperature and four of them blue-shift. The blue shift is explained by interplay between intramolecular and intermolecular hydrogen bonds. The variation in line width and line intensity with temperature is not systematic, although a conspicuous decrease in line intensity with temperature is observed in all cases. Modeling with hybrid PBE0 and TPSSh functionals helps identify absorption modes.

14.
Med Phys ; 41(6): 061707, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24877802

ABSTRACT

PURPOSE: Due to the current interest in MRI-guided radiotherapy, the magnetic properties of the materials commonly used in radiotherapy are becoming increasingly important. In this paper, measurement results for the magnetization (BH) curves of a range of sintered heavy tungsten alloys used in radiation shielding and collimation are presented. METHODS: Sintered heavy tungsten alloys typically contain >90% tungsten and <10% of a combination of iron, nickel, and copper binders. Samples of eight different grades of sintered heavy tungsten alloys with varying binder content were investigated. Using a superconducting quantum interference detector magnetometer, the induced magnetic moment m was measured for each sample as a function of applied external field H0 and the BH curve derived. RESULTS: The iron content of the alloys was found to play a dominant role, directly influencing the magnetization M and thus the nonlinearity of the BH curve. Generally, the saturation magnetization increased with increasing iron content of the alloy. Furthermore, no measurable magnetization was found for all alloys without iron content, despite containing up to 6% of nickel. For two samples from different manufacturers but with identical quoted nominal elemental composition (95% W, 3.5% Ni, 1.5% Fe), a relative difference in the magnetization of 11%-16% was measured. CONCLUSIONS: The measured curves show that the magnetic properties of sintered heavy tungsten alloys strongly depend on the iron content, whereas the addition of nickel in the absence of iron led to no measurable effect. Since a difference in the BH curves for two samples with identical quoted nominal composition from different manufacturers was observed, measuring of the BH curve for each individual batch of heavy tungsten alloys is advisable whenever accurate knowledge of the magnetic properties is crucial. The obtained BH curves can be used in FEM simulations to predict the magnetic impact of sintered heavy tungsten alloys.


Subject(s)
Alloys/chemistry , Magnetic Phenomena , Magnetic Resonance Imaging/methods , Radiotherapy, Image-Guided/methods , Tungsten/chemistry , Copper/chemistry , Iron/chemistry , Nickel/chemistry , Nonlinear Dynamics , Radiation Equipment and Supplies
15.
Chemistry ; 14(19): 5996-6002, 2008.
Article in English | MEDLINE | ID: mdl-18435446

ABSTRACT

Flute-like porous alpha-Fe2O3 nanorods and branched nanostructures such as pentapods and hexapods were prepared through dehydration and recrystallisation of hydrothermally synthesised beta-FeOOH precursor. Transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction analyses reveal that the nanorods, which grow along the [110] direction, have nearly hollow cavities and porous walls with a pore size of 20-50 nm. The hexapods have six symmetric arms with a diameter of 60-80 nm and length of 400-900 nm. The growth direction of the arms in the hexapod-like nanostructure is also along the [110] direction, and there is a dihedral angle of 69.5 degrees between adjacent arms. These unique iron oxide nanostructures offer the first opportunity to investigate their magnetic and gas sensing properties. The nanostructures exhibited unusual magnetic behaviour, with two different Morin temperatures under field-cooled and zero-field-cooled conditions, owing to their shape anisotropy and magnetocrystalline anisotropy. Furthermore, the alpha-Fe2O3 nanostructures show much better sensing performance towards ethanol than that of the previously reported polycrystalline nanotubes. In addition, the alpha-Fe2O3 nanostructure based sensor can selectively detect formaldehyde and acetic acid among other toxic, corrosive and irritant vapours at a low working temperature with rapid response, high sensitivity and good stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...