Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 11(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37189622

ABSTRACT

The tauopathy of Alzheimer's disease (AD) is first observed in the brainstem and entorhinal cortex, spreading trans-synaptically along specific pathways to other brain regions with recognizable patterns. Tau propagation occurs retrogradely and anterogradely (trans-synaptically) along a given pathway and through exosomes and microglial cells. Some aspects of in vivo tau spreading have been replicated in transgenic mice models expressing a mutated human MAPT (tau) gene and in wild-type mice. In this study, we aimed to characterize the propagation of different forms of tau species in non-transgenic 3-4 months old wild-type rats after a single unilateral injection of human tau oligomers and tau fibrils into the medial entorhinal cortex (mEC). We determined whether different variants of the inoculated human tau protein, tau fibrils, and tau oligomers, would induce similar neurofibrillary changes and propagate in an AD-related pattern, and how tau-related pathological changes would correlate with presumed cognitive impairment. We injected human tau fibrils and tau oligomers stereotaxically into the mEC and examined the distribution of tau-related changes at 3 days and 4, 8, and 11 months post-injection using antibodies AT8 and MC1, which reveal early phosphorylation and aberrant conformation of tau, respectively, HT7, anti-synaptophysin, and the Gallyas silver staining method. Human tau oligomers and tau fibrils exhibited some similarities and some differences in their ability to seed and propagate tau-related changes. Both human tau fibrils and tau oligomers rapidly propagated from the mEC anterogradely into the hippocampus and various parts of the neocortex. However, using a human tau-specific HT7 antibody, 3 days post-injection we found inoculated human tau oligomers in the red nucleus, primary motor, and primary somatosensory cortex, a finding not seen in animals inoculated with human tau fibrils. In animals inoculated with human tau fibrils, 3 days post-injection the HT7 antibody showed fibrils in the pontine reticular nucleus, a finding explained only by uptake of human tau fibrils by incoming presynaptic fibers to the mEC and retrograde transport of inoculated human tau fibrils to the brainstem. Rats inoculated with human tau fibrils showed as early as 4 months after inoculation a spread of phosphorylated tau protein at the AT8 epitopes throughout the brain, dramatically faster propagation of neurofibrillary changes than with human tau oligomers. The overall severity of tau protein changes 4, 8, and 11 months after inoculation of human tau oligomers and tau fibrils correlated well with spatial working memory and cognition impairments, as measured by the T-maze spontaneous alternation, novel object recognition, and object location tests. We concluded that this non-trangenic rat model of tauopathy, especially when using human tau fibrils, demonstrates rapidly developing pathologic alterations in neurons, synapses, and identifiable pathways together with cognitive and behavioral changes, through the anterograde and retrograde spreading of neurofibrillary degeneration. Therefore, it represents a promising model for future experimental studies of primary and secondary tauopathies, especially AD.

2.
Biomedicines ; 7(3)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547462

ABSTRACT

Retinoic acid is one of the most well-known agents able to induce differentiation in several types of tumours. Unfortunately, most of the tumours are refractive to the differentiation cues. The aim of this investigation was to analyse the effects of prolonged treatment with retinoic acid on two cell lines of neural origin refractive to differentiation. Cells were also treated with retinoic acid in combination with a poly(ADP-ribosyl) polymerase (PARP) inhibitor because PARP1 is a known chromatin modulator and can influence the process of differentiation. The main methods comprised tumour cell line culturing and treatment; analysis of RNA and protein expression after cell treatment; as well as analysis of urokinase activity, migration, and proliferation. Both cell lines continued to proliferate under the prolonged treatment and showed increase in urokinase plasminogen activator activity. Analysis of gene expression and cell phenotype revealed different mechanisms, which only in neuroblastoma H4 cells could indicate the process of epithelial-mesenchymal transition. The data collected indicate that the activity of the urokinase plasminogen activator, although belonging to an extracellular protease, does not necessary lead to epithelial-mesenchymal reprogramming and increase in cell migration but can have different outcomes depending on the intracellular milieu.

3.
Cells ; 7(6)2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29903986

ABSTRACT

Differentiation of blood cells is one of the most complex processes in the body. It is regulated by the action of transcription factors in time and space which creates a specific signaling network. In the hematopoietic signaling system, Notch is one of the main regulators of lymphocyte development. The aim of this study was to get insight into the regulation of Notch signalization and the influence of poly(ADP-ribose)polymerase (PARP) activity on this process in three leukemia cell lines obtained from B and T cells. PARP1 is an enzyme involved in posttranslational protein modification and chromatin structure changes. B and T leukemia cells were treated with Notch and PARP inhibitors, alone or in combination, for a prolonged period. The cells did not show cell proliferation arrest or apoptosis. Analysis of gene and protein expression set involved in Notch and PARP pathways revealed increase in JAGGED1 expression after PARP1 inhibition in B cell lines and changes in Ikaros family members in both B and T cell lines after γ-secretase inhibition. These data indicate that Notch and PARP inhibition, although not inducing differentiation in leukemia cells, induce changes in signaling circuits and chromatin modelling factors.

4.
Clin Breast Cancer ; 17(8): 629-637, 2017 12.
Article in English | MEDLINE | ID: mdl-28456486

ABSTRACT

INTRODUCTION: Sodium salicylate (NaS) is a derivate of acetylsalicylic acid or aspirin, used as a nonsteroidal anti-inflammatory drug for centuries, for its analgesic and anti-inflammatory effects. It was found to modulate different signaling pathways, in a cell-specific way. Here, we explore the effect of NaS on cell growth and urokinase activity in MDA MB-231 breast cancer cells. MATERIALS AND METHODS: We analyzed the effect of NaS treatment on cell growth by flow cytometry and viability test. The transwell migration assay was used to study the migratory response of the cells. The gene expression was analyzed by qRT-PCR on RNA level and by Western blot analysis on protein level. Urokinase activity was assessed by caseinolysis. RESULTS: Sublethal concentrations of NaS decreased cell growth and inhibited urokinase activity. The latter was a consequence of decrease in urokinase expression and increase in expression of its inhibitors. Analysis of signaling molecules revealed activation of transforming growth factor-ß signaling, increase in master transcription factors for epithelial-mesenchymal transition and changes in integrin expression. CONCLUSIONS: We propose that NaS causes partial cellular reprogramming through transforming growth factor-ß signaling which, together with direct NaS influence, causes changes in expression in a set of genes involved in extracellular proteolysis. These data could be beneficial for the development of new therapeutic approaches in invasive breast cancer treatment.


Subject(s)
Breast Neoplasms/drug therapy , Cyclooxygenase Inhibitors/pharmacology , Sodium Salicylate/pharmacology , Urokinase-Type Plasminogen Activator/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclooxygenase Inhibitors/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Female , Flow Cytometry , Gene Expression Profiling , Humans , Integrins/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects , Sodium Salicylate/therapeutic use , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...