Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mycologia ; 105(5): 1190-201, 2013.
Article in English | MEDLINE | ID: mdl-23709576

ABSTRACT

Rhizoctonia blight is a common and serious disease of many turfgrass species. The most widespread causal agent, Thanatephorus cucumeris (anamorph: R. solani), consists of several genetically different subpopulations. In addition, Waitea circinata varieties zeae, oryzae and circinata (anamorph: Rhizoctonia spp.) also can cause the disease. Accurate identification of the causal pathogen is important for effective management of the disease. It is challenging to distinguish the specific causal pathogen based on disease symptoms or macroscopic and microscopic morphology. Traditional methods such as anastomosis reactions with tester isolates are time consuming and sometimes difficult to interpret. In the present study universally primed PCR (UP-PCR) fingerprinting was used to assess genetic diversity of Rhizoctonia spp. infecting turfgrasses. Eighty-four Rhizoctonia isolates were sampled from diseased turfgrass leaves from seven distinct geographic areas in Virginia and Maryland. Rhizoctonia isolates were characterized by ribosomal DNA internal transcribed spacer (rDNA-ITS) region and UP-PCR. The isolates formed seven clusters based on ITS sequences analysis and unweighted pair group method with arithmetic mean (UPGMA) clustering of UP-PCR markers, which corresponded well with anastomosis groups (AGs) of the isolates. Isolates of R. solani AG 1-IB (n = 18), AG 2-2IIIB (n = 30) and AG 5 (n = 1) clustered separately. Waitea circinata var. zeae (n = 9) and var. circinata (n = 4) grouped separately. A cluster of six isolates of Waitea (UWC) did not fall into any known Waitea variety. The binucleate Rhizoctonia-like fungi (BNR) (n = 16) clustered into two groups. Rhizoctonia solani AG 2-2IIIB was the most dominant pathogen in this study, followed by AG 1-IB. There was no relationship between the geographic origin of the isolates and clustering of isolates based on the genetic associations. To our knowledge this is the first time UP-PCR was used to characterize Rhizoctonia, Waitea and Ceratobasidium isolates to their infra-species level.


Subject(s)
Basidiomycota/classification , DNA Fingerprinting/methods , Plant Diseases/microbiology , Poaceae/microbiology , Rhizoctonia/classification , Base Sequence , Basidiomycota/genetics , Basidiomycota/isolation & purification , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Genetic Variation , Maryland , Molecular Sequence Data , Phylogeny , Rhizoctonia/genetics , Rhizoctonia/isolation & purification , Sequence Analysis, DNA , Virginia
2.
Plant Dis ; 88(4): 402-406, 2004 Apr.
Article in English | MEDLINE | ID: mdl-30812622

ABSTRACT

Anthracnose basal rot (ABR) is a serious disease of turfgrasses that is caused by the pathogen Colletotrichum graminicola. The relationships of isolates causing ABR on turfgrasses to those causing disease on important crop hosts (maize, sorghum) remain unresolved. Genetic variation among isolates from annual bluegrass, creeping bentgrass, maize, and sorghum was evaluated based on host origin and geographic origin. Isozymes were used to estimate the genetic variation of the isolates. Five enzyme systems comprising 16 alleles from 5 loci were used. Allele frequencies, genetic distance, and linkage disequilibrium values were calculated for isolates based on both host and geographic origin. Isolates from creeping bentgrass and annual bluegrass were the most closely related based on Nei's genetic distance, while isolates from maize and sorghum were the most distantly related, consistent with their known species-level relationship. Isolates from annual bluegrass and creeping bentgrass had different genetic distances to isolates from both maize and sorghum. Annual bluegrass isolates from different geographic regions had the smallest genetic distance values observed in this study, indicating a very close relationship regardless of geographic origin. Based on these data, it appears that host origin, not geographic origin, plays a more important role in the genetic diversity of these fungi.

3.
Toxicology ; 159(1-2): 55-68, 2001 Feb 21.
Article in English | MEDLINE | ID: mdl-11250055

ABSTRACT

Butyl benzyl phthalate (BBP) has been shown to be teratogenic. One mechanism contributing to the teratogenicity of several developmental toxicants, is chemical-induced changes in maternal zinc (Zn) metabolism which result in an increased synthesis of maternal liver metallothionein (Mt), and a subsequent reduction in Zn delivery to the conceptus. We investigated the effects of maternal BBP exposure on maternal-fetal Zn metabolism in Wistar rats. In study I, dams were gavaged with BBP (0,250,1000,1500 or 2000 mg/kg) on gestation days (GD) 11 through 13, and killed on GD 20. Maternal toxicity was evident in the three highest dose groups. Embryo/fetal death and small pup weights and lengths were noted in the 2000 mg BBP/kg group. Fetuses in the 1500 and 2000 mg/kg groups were characterized by poor skeletal ossification, and a high frequency of cleft palate. Rib anomalies were observed in the three highest dose groups. Maternal liver Mt concentrations were only slightly elevated in the 1500 and 2000 mg/kg groups. In study II, dams treated as above, were gavaged with 65Zn and killed 18 h later. While the 2000 mg/kg group had high percentages of 65Zn in some maternal tissues, sequestration of 65Zn in maternal liver was not evident. Thus, BBP is not a strong inducer of Mt, and the teratogenicity of BBP does not appear to be due to alterations in maternal and/or embryonic Zn metabolism.


Subject(s)
Phthalic Acids/toxicity , Plasticizers/toxicity , Reproduction/drug effects , Teratogens/toxicity , Zinc/metabolism , Abnormalities, Drug-Induced/pathology , Animals , Body Weight/drug effects , Calcification, Physiologic/drug effects , Eating/drug effects , Female , Metallothionein/metabolism , Pregnancy , Rats , Rats, Wistar , Tissue Distribution , Trace Elements/metabolism , Zinc Radioisotopes
5.
J Neurobiol ; 30(4): 493-504, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8844513

ABSTRACT

Midshipman fish, Porichthys notatus, have two male reproductive morphs: type 1 males generate long duration advertisement calls ("hums") to attract females to a nest; type II males sneak-spawn and, like females, do not produce mate calls but generate short duration agonistic calls. A vocal pacemaker circuit includes: motoneurons in the caudal brain stem and rostral spinal cord that innervate vocal/sonic muscles; pacemaker neurons that are located ventrolateral to motoneurons and establish their fundamental discharge frequency; and a ventral medullary nucleus that couples the motoneuron-pacemaker circuit bilaterally. Transneuronal biocytin transport identified morph-specific developmental trajectories for the vocal circuit. Among nonreproductive, juvenile type I males, motoneuron soma size and motor nucleus volume increase most during a stage prior to sexual maturation. An additional increase in motoneuron size and nucleus volume is coupled to the greatest increase in pacemaker soma size at a stage coincident with the onset of sexual maturity; ventral medullary neurons show similar growth increments during both stages. Type II males (and females) mature with no or little change in cell size or motor nucleus volume. The results indicate that alternative mating tactics are paralleled by alternative developmental trajectories for the neurons that determine tactic-specific behaviors, in this case vocalizations. Together with aging data based on otolith growth, the results support the hypothesis that alternative male morphs in midshipman fish adopt nonsequential, mutually exclusive life history tactics.


Subject(s)
Fishes/growth & development , Fishes/physiology , Sex Characteristics , Sexual Behavior, Animal/physiology , Vocalization, Animal/physiology , Aging/physiology , Animals , Male , Motor Neurons/physiology , Neural Pathways/growth & development , Neural Pathways/physiology , Otolithic Membrane/growth & development
6.
Cytotechnology ; 22(1-3): 79-85, 1996 Jan.
Article in English | MEDLINE | ID: mdl-22358917

ABSTRACT

A rapid, in-process assessment of virus replication is disired to quickly investigate the effects of process parameters on virus infection, and to monitor consistency of process in routine manufacturing of viral vaccines. Live virus potency assays are generally based on plaque formation, cytopathic effect, or antigen production (TCID(50)) and can take days to weeks to complete. Interestingly, when infected with viruses, cultured cells undergo changes in cellular metabolism that can be easily measured. These phenomena appear to be common as they has been observed in a variety of virus-host systems, e.g., in insect cells infected with baculovirus, Vero cells infected with Rotavirus, MRC-5 cells infected with Hepatitis A virus, and MRC-5 cells infected with the Varicella Zoster Virus (VZV). In this article, changes in glycolytic metabolism of MRC-5 cells as a result of CVZ infection are described. Both glucose consumption and lactate production in VZV infected MRC-5 cells are significantly elevated in comparison to uninfected cells. Based on this result, a rapid, in-process assay to follow VZV infection has been developed. The relative increase in lactate production in infected cells (α) increases as the infection progresses and then plateaus as the infection peaks. This plateau correlates with time of peak virus titer and could be used as a harvest triggering parameter in a virus production process.X(u) = cell density of uninfected cellsX(i) = cell density of infected cellsX(T) = total cell densityL(i) = cumulative lactate production in infected culturesL(u) = cumulative lactate production in uninfected culturesq(Li) = specific lactate production of infected cellsq(Lu) = specific lactate production of uninfected cellsk(1), K(2) = constants.

SELECTION OF CITATIONS
SEARCH DETAIL
...