Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2310954, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591858

ABSTRACT

Constructing a semi-permanent base on the moon or Mars will require maximal use of materials found in situ and minimization of materials and equipment transported from Earth. This will mean a heavy reliance on regolith (Lunar or Marian soil) and water, supplemented by small quantities of additives fabricated on Earth. Here it is shown that SiO2-based powders, as well as Lunar and Martian regolith simulants, can be fabricated into building materials at near-ambient temperatures using only a few weight-percent of carbon nanotubes as a binder. These composites have compressive strength and toughness up to 100 MPa and 3 MPa respectively, higher than the best terrestrial concretes. They are electrically conductive (>20 S m-1) and display an extremely large piezoresistive response (gauge factor >600), allowing these composites to be used as internal sensors to monitor the structural health of extra-terrestrial buildings.

2.
Nanotechnology ; 31(37): 375601, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32498057

ABSTRACT

The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particular, nanoscale platinum ditelluride (PtTe2) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals. This method produces high quality-crystals, ideal for fundamental studies. However, it is very resource intensive and difficult to scale up meaning there are significant obstacles to implementation in large-scale applications. In this report, the synthesis of thin films of PtTe2 through the reaction of solid-phase precursor films is described. This offers a production method for large-area, thickness-controlled PtTe2, potentially suitable for a number of applications. These polycrystalline PtTe2 films were grown at temperatures as low as 450 °C, significantly below the typical temperatures used in the CVT synthesis methods. Adjusting the growth parameters allowed the surface coverage and morphology of the films to be controlled. Analysis with scanning electron- and scanning tunneling microscopy indicated grain sizes of above 1 µm could be achieved, comparing favorably with typical values of ∼50 nm for polycrystalline films. To investigate their potential applicability, these films were examined as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The films showed promising catalytic behavior, however, the PtTe2 was found to undergo chemical transformation to a substoichiometric chalcogenide compound under ORR conditions. This study shows while PtTe2 is stable and highly useful for in HER, this property does not apply to ORR, which undergoes a fundamentally different mechanism. This study broadens our knowledge on the electrocatalysis of TMDs.

3.
ACS Nano ; 14(3): 3129-3140, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32027485

ABSTRACT

Two-dimensional (2D) materials show great potential for use in battery electrodes and are believed to be particularly promising for high-rate applications. However, there does not seem to be much hard evidence for the superior rate performance of 2D materials compared to non-2D materials. To examine this point, we have analyzed published rate-performance data for a wide range of 2D materials as well as non-2D materials for comparison. For each capacity-rate curve, we extract parameters that quantify performance which can then be analyzed using a simple mechanistic model. Contrary to expectations, by comparing a previously proposed figure of merit, we find 2D-based electrodes to be on average ∼40 times poorer in terms of rate performance than non-2D materials. This is not due to differences in solid-state diffusion times which were similarly distributed for 2D and non-2D materials. In fact, we found the main difference between 2D and non-2D materials is that ion mobility within the electrolyte-filled pores of the electrodes is significantly lower for 2D materials, a situation which we attribute to their high aspect ratios.

SELECTION OF CITATIONS
SEARCH DETAIL
...