Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 620(7976): 977-981, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37648759

ABSTRACT

Atomic defects in the solid state are a key component of quantum repeater networks for long-distance quantum communication1. Recently, there has been significant interest in rare earth ions2-4, in particular Er3+ for its telecom band optical transition5-7 that allows long-distance transmission in optical fibres. However, the development of repeater nodes based on rare earth ions has been hampered by optical spectral diffusion, precluding indistinguishable single-photon generation. Here, we implant Er3+ into CaWO4, a material that combines a non-polar site symmetry, low decoherence from nuclear spins8 and is free of background rare earth ions, to realize significantly reduced optical spectral diffusion. For shallow implanted ions coupled to nanophotonic cavities with large Purcell factor, we observe single-scan optical linewidths of 150 kHz and long-term spectral diffusion of 63 kHz, both close to the Purcell-enhanced radiative linewidth of 21 kHz. This enables the observation of Hong-Ou-Mandel interference9 between successively emitted photons with a visibility of V = 80(4)%, measured after a 36 km delay line. We also observe spin relaxation times T1,s = 3.7 s and T2,s > 200 µs, with the latter limited by paramagnetic impurities in the crystal instead of nuclear spins. This represents a notable step towards the construction of telecom band quantum repeater networks with single Er3+ ions.

2.
Phys Rev Lett ; 126(11): 110601, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33798373

ABSTRACT

Optical many-body systems naturally possess strong light-matter interactions and are thus of central importance for photonic applications. However, these applications are so far limited within the regime of intrinsic dynamically stable phases, and the possibility of unstable phases remains unidentified. Here we experimentally revealed a new dynamical phase of intrinsic optical instability by using a continuous-wave laser to drive an erbium-doped crystal. The transmission through the sample became unstable for intense laser inputs, and transient net gain was observed if the light passed the sample twice. The phase transition, between states in and out of a dynamical equilibrium, was induced by the dipole-dipole interactions between nearby erbium ions.

3.
Rev Sci Instrum ; 91(10): 105114, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33138548

ABSTRACT

We present a simple technique to experimentally determine the optical-path length change with temperature for optical single-mode fibers. Standard single-mode fibers act as natural low-finesse cavities, with the Fresnel reflection of the straight cleaved surfaces being ∼3%, for the laser light coupled to them. By measuring the intensity variations due to interference of light reflected from the fiber front and end surfaces, while ramping the ambient temperature, the thermal sensitivity of the optical-path length of the fiber can be derived. Light was generated by a narrow linewidth, low drift laser. With our fairly short test fibers, we found that it was possible to reach a relative precision of the temperature sensitivity, compared to a reference fiber, on the 0.4%-2% scale and an absolute precision of 2%-5%, with the potential to improve both by an order of magnitude. The results for single-acrylate, dual-acrylate, and copper- and aluminum-coated fibers are presented. Values are compared with analytic models and results from a finite element method simulation. With the aid of these measurements, a simple fiber-interferometer, which is insensitive to thermal drifts, could be constructed.

SELECTION OF CITATIONS
SEARCH DETAIL
...