Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Assist Tomogr ; 22(3): 480-6, 1998.
Article in English | MEDLINE | ID: mdl-9606392

ABSTRACT

PURPOSE: Our goal was to determine the effects of acoustic echoplanar scanner noise on pure tone hearing thresholds in normal volunteers and to determine the influence of echoplanar sequence repetition time on threshold effects. METHOD: With use of a calibrated audiometer, pure tones ranging from 125 to 8,000 Hz were delivered monaurally to 10 normal-hearing volunteers in a quiet MR scanner suite and in the presence of acoustic scanner noise produced by three separate single shot blipped echoplanar pulse sequences varying only in repetition time (TR = 1,000, 2,000, or 3,000 ms), with all other parameters including the number of slices held constant. The magnitude of noise-induced threshold changes and the slopes of the threshold curves produced by each of the three echoplanar pulse sequences were then analyzed using multiple comparisons and a least significant difference method. The shapes of the threshold curves produced in each background state were best fit using a quadratic effect for frequency in a mixed effects linear model and compared using F test statistics. RESULTS: All of the volunteers demonstrated entirely normal hearing thresholds throughout the full range of tonal frequencies tested (< 25 dB) when no acoustic scanner noise was present in the scanner suite. Pure tone hearing thresholds significantly increased (p < 0.01) in the presence of acoustic scanner noise, with the magnitude of change inversely proportional to the repetition time and therefore the rate of periodic noise production by the echoplanar sequence used. The shape of the threshold curve in the presence of noise produced by the 1,000 ms TR sequence was not equivalent across the frequency spectrum tested but had a quadratic distribution with peak effects at 750-2,000 Hz. As the repetition time was increased and the periodic noise rate decreased, the magnitude of the noise-induced threshold changes significantly lessened (p < 0.01) and the quadratic distributions of the threshold curves changed significantly (p < 0.01), tending toward a more planar configuration. CONCLUSION: Background acoustic echoplanar scanner noise can significantly increase pure tone thresholds in the optimal frequency hearing range (125-8,000 Hz). However, the threshold effects are not equivalent across the frequency spectrum, and the magnitude of threshold changes is dependent on the rate at which periodic acoustic scanner noises are produced for a given sequence repetition time.


Subject(s)
Auditory Threshold/physiology , Echo-Planar Imaging/instrumentation , Noise/adverse effects , Acoustic Stimulation , Adult , Audiometry, Pure-Tone , Auditory Perception/physiology , Confounding Factors, Epidemiologic , Differential Threshold , Ear Protective Devices , Echo-Planar Imaging/methods , Female , Hearing/physiology , Humans , Linear Models , Male , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...