Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 134(4): 1870-7, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-23442632

ABSTRACT

Coffee is one of the most popular beverages in the world, prepared and consumed in many different ways. Taste, aroma and composition of the coffee brew vary depending on the preparation method. Therefore, this study investigates the effect of different brewing methods on the polyphenol and methylxanthine composition and antioxidant capacity of thirteen different coffee brews. The content of total phenols and flavonoids was determined spectrophotometrically and the content of chlorogenic acid derivates (3-CQA, 4-CQA and 5-CQA) and caffeine using the high performance liquid chromatography (HPLC-PDA). Antioxidant capacity of coffee brews was evaluated by using the ABTS (2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)) and FRAP (ferric-reducing antioxidant power) assays. Instant coffee brews showed the highest values in content of total phenols, chlorogenic acid derivates, caffeine and antioxidant capacity, which significantly decreased by milk addition. The antioxidant capacity of coffee brews was in compliance with the total phenol content and content of chlorogenic acid derivates.


Subject(s)
Coffea/chemistry , Coffee/chemistry , Food Handling/methods , Milk/chemistry , Animals , Antioxidants , Cattle , Cooking/methods , Food Additives/chemistry
2.
Phytochem Anal ; 22(2): 172-80, 2011.
Article in English | MEDLINE | ID: mdl-20848396

ABSTRACT

INTRODUCTION: Polyphenolic phytochemicals in traditionally used medicinal plants act as powerful antioxidants, which aroused an increasing interest in their application in functional food development. OBJECTIVE: The effect of extraction time (5 and 15 min) and hydrolysis on the qualitative and quantitative content of phenolic compounds and antioxidant capacity of six traditionally used medicinal plants (Melissa officinalis L., Thymus serpyllum L., Lavandula officinalis Miller, Rubus fruticosus L., Urtica dioica L., and Olea europea L.) were investigated. METHODOLOGY: The content of total phenols, flavonoids, flavan-3-ols and tannins was determined using UV/Vis spectrophotometric methods, while individual phenolic acids, flavones and flavonols were separated and detected using HPLC analysis. Also, to obtain relevant data on the antioxidant capacity, two different assays, (2,2-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging and ferric reducing/antioxidant power (FRAP) assays were used. RESULTS: The extraction efficiency of phenolics, as well as the antioxidant capacity of plant extracts, was affected by both prolonged extraction and hydrolysis. The overall highest content of phenolic compounds was determined in hydrolyzed extract of blackberry leaves (2160 mg GAE/L), followed by the non-hydrolyzed extract of lemon balm obtained after 15 min of extraction (929.33 mg GAE/L). The above extracts also exhibited the highest antioxidant capacity, while extracts of olive leaves were characterized with the lowest content of phenolic compounds, as well as the lowest antioxidant capacity. The highest content of rosmarinic acid, as the most abundant phenolic compound, was determined in non-hydrolyzed extract of lemon balm, obtained after 15 min of extraction. Although the hydrolysis provided the highest content of polyphenolic compounds, longer extraction time (15 min) was more efficient to extract these bioactives than shorter extraction duration (5 min). CONCLUSION: The distribution of detected phenolic compounds showed a wide variability with regard to their botanical origin. Examined medicinal plants showed to be a valuable supplement to a daily intake of bioactive compounds.


Subject(s)
Antioxidants/isolation & purification , Phenols/isolation & purification , Plant Extracts/isolation & purification , Plants, Medicinal/chemistry , Antioxidants/chemistry , Chromatography, High Pressure Liquid , Croatia , Flavonoids/chemistry , Flavonoids/isolation & purification , Hydrolysis , Lamiaceae/chemistry , Oleaceae/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Principal Component Analysis , Tannins/chemistry , Tannins/isolation & purification , Time Factors , Urtica dioica/chemistry
3.
Food Chem ; 129(3): 991-1000, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-25212328

ABSTRACT

The bioactive composition of coffee, as one of the most popular beverages in the world, has attracted interest as a potential source of beneficial bioactive compounds, especially polyphenols and caffeine. Since the content of these compounds is affected by the processing conditions, the objective of this study was to determine the content of polyphenolic compounds and caffeine in four different coffee varieties: Minas and Cioccolatato (Coffea arabica), and Cherry and Vietnam (Coffea canephora syn. Coffea robusta), roasted by three varying degrees (light, medium and dark). The content of the polyphenolic compounds and the antioxidant capacity of coffees were determined using UV/Vis spectrophotometric methods, while the content of chlorogenic acid derivatives was determined using HPLC analysis. The caffeine content was determined by means of two spectrophotometric methods, as well as HPLC analysis. Additionally, raw caffeine was also obtained by an isolation procedure with chloroform. Cherry coffee, a variety of C. canephora exhibited the highest overall content of total phenols (42.37mg GAE/g), followed by Minas coffee, while Cioccolatato contained the lowest TPC (33.12mg GAE/g). Cherry coffee also exhibited the highest content of individual classes of polyphenols (flavan-3-ols, procyanidins and tannins), while the highest content of chlorogenic acid (CQA) derivatives was determined in Minas and Cioccolatato coffees (C. arabica). The highest content of total and individual polyphenolic compounds was determined in coffees roasted in both light and medium roasting conditions, which was also observed for the content of CQA derivatives and antioxidant capacity of roasted coffees. The highest caffeine content in the coffee samples was determined by employing the HPLC analysis (0.06-2.55%). Light roasted Cherry coffee contained the highest overall content of caffeine among all coffees, which exhibited a decrease with intensified roasting.

4.
J Agric Food Chem ; 58(12): 7187-95, 2010 Jun 23.
Article in English | MEDLINE | ID: mdl-20509612

ABSTRACT

In the present study the physical properties of powdered cocoa drink mixtures prepared from two cocoa powders with various fat contents and different sweeteners, as well as the bioactive content and sensory properties of cocoa drinks prepared from them, were investigated. Particle size and bulk density of the used sugars and sweeteners, as well as the formulated mixtures, were determined and their influence on cohesion index was evaluated. To compare the content of polyphenols in the formulated cocoa drink mixtures, UV-vis spectrophotometric methods were applied. Antioxidant capacity of cocoa drinks was evaluated by using the 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), and ferric reducing/antioxidant power (FRAP) assays. The analyzed cocoa drinks prepared from cocoa powder and different sugars or sweeteners delivered a substantial content of cocoa antioxidants, whereas the content and the type of sugar or sweetener did not affect the polyphenolic constituents of the prepared cocoa mixtures. Cocoa powder mixtures prepared with the cocoa powder containing higher fat content (16-18%) generally provided lower total polyphenol, total flavonoid, flavan-3-ol, and proanthocyanidin contents, compared to the mixtures prepared with cocoa containing lower fat content (10-12%). Total phenol content of cocoa drinks prepared from experimental mixtures ranged from 320.45 to 480.45 mg of GAE/L, whereas the ranking of the antioxidant capacities varied depending on the used assay, and the fat content of cocoa powder did not affect the antioxidant capacity of cocoa mixtures. As determined, the addition of sugar to cocoa powder increases the solubility and dispersibility of the mixtures; on the basis of their cohesion index all mixtures can be classified as very cohesive or hardened/extremely cohesive. Results of the sensory evaluation, using the 9-point hedonic scale, showed that there was a preference for the cocoa drinks made with sweeteners (aspartame/acesulfame K and stevia extract), and there was a significant difference in the sensory attributes between the experimental mixtures and the control. The displayed results indicate the significant potential of using alternative sweeteners for the preparation of cocoa drink mixtures, which may provide good physical and sensory properties and also enhance the already existing beneficial effects of cocoa.


Subject(s)
Beverages/analysis , Cacao/chemistry , Plant Extracts/chemistry , Powders/chemistry , Sweetening Agents/chemistry , Particle Size , Solubility
5.
Food Chem ; 110(4): 852-8, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-26047270

ABSTRACT

The efficiencies of different solvents in the extraction of phenolics from bagged and loose leaves of white and green tea, after different extraction times, as well as the antioxidative capacity of the obtained extracts, were investigated. The developed HPLC method has the potential to separate and determinate 17 phenolics widely distributed in plants, but in investigated tea extracts only four catechins and traces of three flavonols and one flavone were separated and detected based on comparison with authentic standards. The extraction efficiency of phenolics depended strongly on the time of extraction and the solvents used. The extraction of catechins from green tea was significantly affected by the form (bagged or loose) of the tea, whereas this effect was shown not to be statistically significant for white tea. Green tea was a richer source of phenolics than was white tea. The extraction of phenolics from white tea by water could be accelerated by the addition of lemon juice. Aqueous ethanol (40%) was most effective in the prolonged extraction of catechins. The antioxidative capacity of the investigated tea extracts correlated with their phenolic content.

SELECTION OF CITATIONS
SEARCH DETAIL
...