Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Transl Myol ; 32(4)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36039833

ABSTRACT

The purpose of this study was to investigate the relationship between oral and dental health in cancer patients and control group, which was conducted in Tabriz Shahid Gazi hospital. A researchers-made and validated questionnaire including oral and dental health criteria, was filled by the cancer patients (201 cases) and healthy controls (199 cases). Then, the results of the study were analyzed by SPSS software, and reported as Odds ratios (95 % confidence intervals) in tow groups. The results indicate that comparison of filled tooth, tooth extraction, dental caries, and gingival problems including bleeding, gum surgery and inflammation in cancer and controls were significantly meaningful. However, the comparison between the two groups was not significant in terms of the type of the tooth (natural or denture) and the number of daily toothbrushes, but they were considered as risk factors due to statistical results. Environmental factors, and especially oral hygiene, can play an important role in the incidence of different cancers. Among these, the type of oral microorganisms, and their overgrowth and released antigens should be studied further in the emergence of different kinds of cancer in humans.

3.
Emerg Med Int ; 2021: 1316992, 2021.
Article in English | MEDLINE | ID: mdl-34777863

ABSTRACT

Klebsiella pneumoniae complex (KPC) accounts for approximately one-third of all Gram-negative infections. Moreover, it is highly resistant and can taxonomically be distributed into KpI, KpII, and KpIII phylogroups. This study aimed to investigate the distribution of phylogenetic groups and the relationship between them and antibiotic resistance patterns. For this purpose, we collected KPC isolates from Tabriz, Iran, between 2018 and 2020. Antimicrobial susceptibility testing was performed by disk diffusion agar, and phylogenetic groups were then examined using gyrA restriction fragment length polymorphism (RFLP) and parC PCR methods. A total of 100 KPC isolates were obtained from the clinical specimens (urine, respiratory secretion, blood, wounds, and trachea). The enrolled patients included 47 men and 53 women aged from 1 to 91 years old. The highest sensitivity was found related to fosfomycin as 85%, followed by amikacin as 66%. The three phylogenetically groups by the RFLP-PCR method were found in KPC, 96% (96 isolates) as KpI, 3% (3 isolates) as KpII, and 1% (1isolate) as KpIII. The highest antibiotic resistance was observed in KpI. It was shown that a valid identification of three phylogenetic groups of KPC can be done by combining both gyrA PCR-RFLP and parC PCR. Of note, the KpI group was also observed as the dominant phylogenetic group with the highest resistance to antibiotics.

4.
Iran J Basic Med Sci ; 24(10): 1366-1372, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35096294

ABSTRACT

OBJECTIVES: Pseudomonas aeruginosa is an opportunistic pathogen that is an important cause of nosocomial infections. This bacterium produces various virulence factors, among which exotoxin A is significantly involved in mortality and morbidity. In this study, we evaluated the immunogenicity of native exotoxin A extracted from the P. aeruginosa and its conjugation with gold nanoparticles in the animal model. MATERIALS AND METHODS: Exotoxin A was first extracted and purified from the culture medium of P. aeruginosa PAO1 by selective precipitation and dialysis. The gold nanoparticles were prepared using the Turkevich method and conjugated to the prepared exotoxin A by electrostatic force. The size and conjugation were confirmed using electron microscopy and Fourier transform infrared spectrometry (FTIR), respectively. The immunogenicity of prepared ExoA-gold nanoparticles was investigated in the mice model. RESULTS: The results indicated that nano-gold particles can be conjugated to the native exotoxin A with high efficiency. Immunogenicity investigation demonstrated that antibody titers produced against native exotoxin A and its conjugate to nano-gold particles are significant in a mouse model (P<0.005). Moreover, significant protection against 2×LD50 P. aeruginosa infection was observed in animals immunized with nano-gold-exotoxin A as compared with control groups (P=0.00). CONCLUSION: Our study indicated that exotoxin A can be produced with acceptable purity in the laboratory, and conjugated to gold nanoparticles. Based on these results nano-gold-exotoxin A conjugate is highly immunogenic and can be considered a potential vaccine candidate for P. aeruginosa infections.

5.
Trans R Soc Trop Med Hyg ; 114(10): 770-781, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32609840

ABSTRACT

BACKGROUND: Quinolones are broad-spectrum antibiotics, which are used for the treatment of different infectious diseases associated with Enterobacteriaceae. During recent decades, the wide use as well as overuse of quinolones against diverse infections has led to the emergence of quinolone-resistant bacterial strains. Herein, we present the development of quinolone antibiotics, their function and also the different quinolone resistance mechanisms in Enterobacteriaceae by reviewing recent literature. METHODS: All data were extracted from Google Scholar search engine and PubMed site, using keywords; quinolone resistance, Enterobacteriaceae, plasmid-mediated quinolone resistance, etc. RESULTS AND CONCLUSION: The acquisition of resistance to quinolones is a complex and multifactorial process. The main resistance mechanisms consist of one or a combination of target-site gene mutations altering the drug-binding affinity of target enzymes. Other mechanisms of quinolone resistance are overexpression of AcrAB-tolC multidrug-resistant efflux pumps and downexpression of porins as well as plasmid-encoded resistance proteins including Qnr protection proteins, aminoglycoside acetyltransferase (AAC(6')-Ib-cr) and plasmid-encoded active efflux pumps such as OqxAB and QepA. The elucidation of resistance mechanisms will help researchers to explore new drugs against the resistant strains.


Subject(s)
Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae/drug effects , Plasmids/genetics , Porins/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Humans , Microbial Sensitivity Tests , Plasmids/drug effects , Porins/drug effects , Quinolones/therapeutic use
6.
Eur J Clin Microbiol Infect Dis ; 39(2): 215-218, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31440916

ABSTRACT

Advances in the science have promoted all aspects of human's life; these, in turn, have changed many principles and scientific postulates. Koch's postulates, since the beginning of their implementation, have been one of the important subjects involving complications and misinterpretations regarding the causal relationship of microbe-hosts. These postulates have been shown not to be correct in some cases including the inability of some microbes to grow in the culture medium, viruses, or anaerobic bacteria. Today, due to some new scientific facts like the social behaviors of bacteria, such as quorum sensing, there are serious problems regarding the definition of whole microbial effects; these include microbiomes and viromes, as well as their interaction with the existing eukaryotics, the complicated relations between bacteria, L-forms, and cell wall-deficient bacteria, and the important role of microbes in the development of non-infectious diseases. So, the application of Koch's postulates to explain the causal relationships between host-microbes could be difficult. Therefore, nowadays, even the molecular Koch's postulates are not accountable. Also, according to the new scientific discoveries, various criteria such as changes in the immune system, pathology, and clinical findings, along with the results of daily laboratory tests, should be used to apply Koch's postulates in the etiologic studies. Otherwise, the possible etiologic relationships between the host-microbes cannot be verified due to numerous complications; certainly, the relationship between the doctor and the lab is ultimately weakened. Therefore, public health, prevention, and much of the antimicrobial treatments will also remain in a state of ambiguity.


Subject(s)
Communicable Diseases/microbiology , Host Microbial Interactions , Noncommunicable Diseases , Humans , Microbiota , Public Health
7.
Environ Sci Pollut Res Int ; 27(5): 4969-4975, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31845254

ABSTRACT

Paraquat (PQ) is a herbicide agent commonly used in agricultural applications. Hepatotoxicity is among clinical complications associated with PQ intoxication. Oxidative stress and its subsequent events are major mechanisms identified in PQ-induced liver toxicity. Berberine (BBR) is a natural antioxidant widely investigated for its hepatoprotective effects. The present study designed to evaluate the potential cytoprotective properties of BBR against PQ-induced cytotoxicity in primary cultured rat hepatocytes and in vivo test of liver function enzymes. Cellular and biochemical parameters including lactate dehydrogenase (LDH), cell viability, ROS formation, glutathione (GSH) content, and mitochondrial membrane potential in the PQ-treated hepatocytes were measured, and the mentioned markers were evaluated in the presence of BBR. BBR treatment caused significant decrease in PQ-induced cell death, ROS formation, and LDH release. On the other hand, it was found that BBR inhibits cellular glutathione depletion in PQ-treated hepatocytes. Also, BBR treatment significantly diminished PQ-induced the liver function enzyme elevation. These data mention the potential hepatoprotective effect of BBR with therapeutic capability against PQ-induced liver damage.


Subject(s)
Berberine , Glutathione/chemistry , Herbicides , Liver/drug effects , Paraquat/chemistry , Animals , Berberine/chemistry , Berberine/therapeutic use , Oxidative Stress/drug effects , Rats
8.
Jundishapur J Microbiol ; 8(7): e19961, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26421132

ABSTRACT

BACKGROUND: Extensive use of cotrimoxazole has been associated with increasing level of Escherichia coli resistance. OBJECTIVES: In the current study, we focused on assessing the prevalence of E. coli resistance to cotrimoxazole and frequency of its associated genes. MATERIALS AND METHODS: One-hundred and forty-four E. coli isolates were identified during March 2007 to April 2012 at Ilam hospitals and Milad (Tehran) hospital. Antibiotic susceptibility for screening of resistance isolates was done by the Kirby-Bauer method. The sul1, sul2, sul3, dfrA1, dfrA5, int1, blaTEM, blaSHV and CTX-M genes were detected by polymerase chain reaction (PCR) amplification. Plasmid curing was done for identifying correlations between resistance genes and plasmids. RESULTS: Amongst the 144 E. coli isolates, seventy-two (50%) Extended Spectrum Beta Lactamase (ESBL)-producing and seventy-two (50%) non-ESBL-producing E. coli isolates were identified; eighty-seven isolates (60.41%) were resistant to cotrimoxazole. Frequencies of sul1, sul2 and sul3, were 81% (116 isolates), 67% (96 isolates) and 2.29% (three isolates), respectively. Furthermore, 50.57% (72 isolates) had sul1 and sul2, 2.29% (3 isolates) contained sul2 and sul3, and 2.29% (three isolates) contained sul1, sul2 and sul3 genes, simultaneously. Thirty-four (39.1%) of the isolates had the dfrA1 gene. Five (5.7%) of the isolates had the dfrA5 gene. Sixty-eight (78.2%) strains contained the int1 gene. Furthermore, dfrA1 and dfrA5 were present in three (3.4%) of the isolates. The results showed that of the ESBL-producing isolates, 85.2% (n = 122), 53.2% (n = 76) and 26.1% (n = 37) were blaTEM, blaSHV and CTX-M harboring isolates, respectively. CONCLUSIONS: Our study indicated a high frequency of cotrimoxazole resistance gene in E. coli isolates from Ilam and Tehran (Milad) hospitals, and sul genes had a major role in cotrimoxazole resistance of these isolates.

9.
Jundishapur J Microbiol ; 8(4): e18102, 2015 Apr.
Article in English | MEDLINE | ID: mdl-26034551

ABSTRACT

BACKGROUND: Aminoglycosides are a group of antibiotics that have been widely used in the treatment of life-threatening infections of Gram-negative bacteria. OBJECTIVES: This study aimed to evaluate the frequency of aminoglycoside resistance genes in Enterococcus and Salmonella strains isolated from clinical samples by PCR. MATERIALS AND METHODS: In this study, 140 and 79 isolates of Enterococcus and Salmonella were collected, respectively. After phenotypic biochemical confirmation, 117 and 77 isolates were identified as Enterococcus and Salmonella, respectively. After the biochemical identification of the isolates, antibiotic susceptibility for screening of resistance was done using the Kirby-Bauer method for gentamicin, amikacin, kanamycin, tobramycin and netilmycin. DNA was extracted from resistant strains and the presence of acc (3)-Ia, aac (3')-Ib, acc (6)-IIa ,16SrRNA methylase genes (armA and rat) was detected by PCR amplification using special primers and positive controls. RESULTS: Enterococcus isolates have the highest prevalence of resistance to both kanamycin and amikacin (68.4%), and Salmonella isolates have the highest prevalence of resistance against kanamycin (6.9%). Ninety-three and 26 isolates of Enterococcus and Salmonella at least were resistant against one of the aminoglycosides, respectively. Moreover, 72.04%, 66.7%, and 36.6% of the resistant strains of Enterococcus had the aac (3')-Ia, aac (3')-IIa, and acc (6')-Ib genes, respectively. None of the Salmonella isolates have the studied aminoglycoside genes. CONCLUSIONS: Our results indicate that acetylation genes have an important role in aminoglycoside resistance of the Enterococcus isolates from clinical samples. Moreover, Salmonella strains indicate very low level of aminoglycoside resistance, and aminoglycoside resistance genes were not found in Salmonella isolates. These results indicate that other resistance mechanisms, including efflux pumps have an important role in aminoglycoside resistance of Salmonella.

SELECTION OF CITATIONS
SEARCH DETAIL
...