Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 129(24): 241301, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36563281

ABSTRACT

We search for ultralight scalar dark matter candidates that induce oscillations of the fine structure constant, the electron and quark masses, and the quantum chromodynamics energy scale with frequency comparison data between a ^{171}Yb optical lattice clock and a ^{133}Cs fountain microwave clock that span 298 days with an uptime of 15.4%. New limits on the couplings of the scalar dark matter to electrons and gluons in the mass range from 10^{-22} to 10^{-20} eV/c^{2} are set, assuming that each of these couplings is the dominant source of the modulation in the frequency ratio. The absolute frequency of the ^{171}Yb clock transition is also determined as 518 295 836 590 863.69(28) Hz, which is one of the important contributions toward a redefinition of the second in the International System of Units.

3.
Opt Express ; 27(5): 6404-6414, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876226

ABSTRACT

We demonstrate an 8-branch Er:fiber frequency comb with seven application ports, which can be individually optimized for applications with different wavelengths. The beat between the comb and a cw laser has a signal-to-noise ratio exceeding 30 dB at a resolution bandwidth of 300 kHz. The 8-branch frequency comb is used to perform frequency locking for four repumping and lattice lasers, and the frequency measurement of two clock lasers of strontium and ytterbium optical lattice clocks. We have achieved reliable optical lattice clock operation, thanks to the stable frequency locking and measurement obtained by using the 8-branch frequency comb. The developed frequency comb is a powerful experimental tool for various applications, including not only optical lattice clocks, but also research on quantum optics that use many frequency-stabilized lasers.

4.
Article in English | MEDLINE | ID: mdl-30235125

ABSTRACT

We report an uncertainty evaluation of an 171Yb optical lattice clock with a total fractional uncertainty of 3.6×10-16 , which is mainly limited by the lattice-induced light shift and the blackbody radiation shift. Our evaluation of the lattice-induced light shift, the density shift, and the second-order Zeeman shift is based on an interleaved measurement where we measure the frequency shift using the alternating stabilization of a clock laser to the 6s2 1S0-6s6p 3P0 clock transition with two different experimental parameters. In the present evaluation, the uncertainties of two sensitivity coefficients for the lattice-induced hyperpolarizability shift d incorporated in a widely used light shift model by RIKEN and the second-order Zeeman shift aZ are improved compared with the uncertainties of previous coefficients. The hyperpolarizability coefficient d is determined by investigating the trap potential depth and the light shifts at the lattice frequencies near the two-photon transitions 6s6p3P0-6s8p3P0, 6s8p3P2, and 6s5f3F2. The obtained values are d=-1.1(4) µ Hz and aZ=-6.6(3) Hz/mT2. These improved coefficients should reduce the total systematic uncertainties of Yb lattice clocks at other institutes.

5.
Article in English | MEDLINE | ID: mdl-29856725

ABSTRACT

We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87Sr and 171Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1S0-3P0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

6.
Opt Express ; 24(11): 12142-50, 2016 May 30.
Article in English | MEDLINE | ID: mdl-27410134

ABSTRACT

We demonstrate a compact and robust method for generating a 399-nm light resonant on the 1S0 - 1P1 transition in ytterbium using a single-pass periodically poled LiNbO3 waveguide for second harmonic generation (SHG). The obtained output power at 399 nm was 25 mW when a 798-nm fundamental power of 380 mW was coupled to the waveguide. We observed no degradation of the SHG power for 13 hours with a low power of 6 mW. The obtained SHG light has been used as a seed light for injection locking, which provides sufficient power for laser cooling ytterbium.

7.
Opt Express ; 23(16): 20749-59, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367927

ABSTRACT

We demonstrate a compact iodine-stabilized laser operating at 531 nm using a coin-sized light source consisting of a 1062-nm distributed-feedback diode laser and a frequency-doubling element. A hyperfine transition of molecular iodine is observed using the light source with saturated absorption spectroscopy. The light source is frequency stabilized to the observed iodine transition and achieves frequency stability at the 10(-12) level. The absolute frequency of the compact laser stabilized to the a(1) hyperfine component of the R(36)32 - 0 transition is determined as 564074632419(8) kHz with a relative uncertainty of 1.4×10(-11). The iodine-stabilized laser can be used for various applications including interferometric measurements.

8.
Opt Express ; 22(7): 7898-905, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718165

ABSTRACT

The frequency ratio of the (1)S(0)(F = 1/2)-(3)P(0)(F = 1/2) clock transition in (171)Yb and the (1)S(0)(F = 9/2)-(3)P(0)(F = 9/2) clock transition in (87)Sr is measured by an optical-optical direct frequency link between two optical lattice clocks. We determined the ratio (ν(Yb)/ν(Sr)) to be 1.207 507 039 343 341 2(17) fractional standard uncertainty of 1.4 × 10(-15) [corrected]. The measurement uncertainty of the frequency ratio is smaller than that obtained from absolute frequency measurements using the International Atomic Time (TAI) link. The measured ratio agrees well with that derived from the absolute frequency measurement results obtained at NIST and JILA, Boulder, CO using their Cs-fountain clock. Our measurement enables the first international comparison of the frequency ratios of optical clocks. The measured frequency ratio will be reported to the International Committee for Weights and Measures for a discussion related to the redefinition of the second.

9.
Opt Express ; 22(26): 32199, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25607184

ABSTRACT

We correct the errors in the uncertainty budget. The determined ratio (νYb/νSr) is corrected to be 1.207 507 039 343 341 2(17) with a fractional standard uncertainty of 1.4 × 10-15.

10.
Opt Express ; 21(7): 7891-6, 2013 Apr 08.
Article in English | MEDLINE | ID: mdl-23571880

ABSTRACT

We propose a novel, high-performance, and practical laser source system for optical clocks. The laser linewidth of a fiber-based frequency comb is reduced by phase locking a comb mode to an ultrastable master laser at 1064 nm with a broad servo bandwidth. A slave laser at 578 nm is successively phase locked to a comb mode at 578 nm with a broad servo bandwidth without any pre-stabilization. Laser frequency characteristics such as spectral linewidth and frequency stability are transferred to the 578-nm slave laser from the 1064-nm master laser. Using the slave laser, we have succeeded in observing the clock transition of (171)Yb atoms confined in an optical lattice with a 20-Hz spectral linewidth.


Subject(s)
Filtration/instrumentation , Lasers , Oscillometry/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Time Factors , Equipment Design , Equipment Failure Analysis
11.
Opt Express ; 20(14): 16010-6, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772290

ABSTRACT

A narrow linewidth diode laser system at 689 nm is realized by phase-locking an extended cavity diode laser to one tooth of a narrow linewidth optical frequency comb. The optical frequency comb is phase-locked to a narrow linewidth laser at 1064 nm, which is frequency stabilized to a high-finesse optical cavity. We demonstrate the magneto-optical trapping of Sr using an intercombination transition with the developed laser system.

12.
Opt Express ; 20(13): 13769-76, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22714442

ABSTRACT

We have developed an optical frequency comb using a mode-locked fiber ring laser with an intra-cavity waveguide electro-optic modulator controlling the optical length in the laser cavity. The mode-locking is achieved with a simple ring configuration and a nonlinear polarization rotation mechanism. The beat note between the laser and a reference laser and the carrier envelope offset frequency of the comb were simultaneously phase locked with servo bandwidths of 1.3 MHz and 900 kHz, respectively. We observed an out-of-loop beat between two identical combs, and obtained a coherent δ-function peak with a signal to noise ratio of 70 dB/Hz.


Subject(s)
Electronics/instrumentation , Filtration/instrumentation , Lasers , Micro-Electrical-Mechanical Systems/instrumentation , Refractometry/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis , Feedback
13.
Article in English | MEDLINE | ID: mdl-20211777

ABSTRACT

A light source to drive the (1)S0-(3)P0 transition in Yb atoms is generated by 2 solid state lasers: a Nd:YAG laser and an Yb:YAG laser, using a sum-frequency generation (SFG) scheme. With a ridge waveguide (WG) periodically poled lithium niobate (PPLN) device, SFG power of about 150 mW is obtained at the required frequency. The zero-expansion temperature of a Fabry-Pérot etalon was determined by using a home-made fiber-based optical frequency comb running continuously for weeks. Frequency stabilization of the clock laser system was also evaluated by the optical frequency comb.

14.
Opt Express ; 18(2): 1667-76, 2010 Jan 18.
Article in English | MEDLINE | ID: mdl-20173994

ABSTRACT

We demonstrate that fiber-based frequency combs with multi-branch configurations can transfer both linewidth and frequency stability to another wavelength at the millihertz level. An intra-cavity electro-optic modulator is employed to obtain a broad servo bandwidth for repetition rate control. We investigate the relative linewidths between two combs using a stable continuous-wave laser as a common reference to stabilize the repetition rate frequencies in both combs. The achieved energy concentration to the carrier of the out-of-loop beat between the two combs was 99% and 30% at a bandwidth of 1 kHz and 7.6 mHz, respectively. The frequency instability of the comb was 3.7x10(-16) for a 1 s averaging time, improving to 5-8x10(-19) for 10000 s. We show that the frequency noise in the out-of-loop beat originates mainly from phase noise in branched optical fibers.


Subject(s)
Electronics/instrumentation , Fiber Optic Technology/instrumentation , Filtration/instrumentation , Lasers , Optical Devices , Refractometry/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis , Microwaves
15.
Opt Express ; 17(3): 1652-9, 2009 Feb 02.
Article in English | MEDLINE | ID: mdl-19188995

ABSTRACT

A stable light source obtained using sum-frequency generation (SFG) is developed for high-resolution spectroscopy at 578 nm. Hyperfine transitions of molecular iodine are observed by using the SFG light source with saturation spectroscopy. The light source is frequency stabilized to the observed hyperfine transition and achieves a stability of 2x10(-12) for a 1-s averaging time. The absolute frequency of the light source stabilized on the a1 component of the R(37)16-1 transition is determined as 518304551833 (2) kHz. This transition serves as a frequency reference for the (1)S(0)-(3)P(0) optical clock transition in neutral ytterbium (Yb).

SELECTION OF CITATIONS
SEARCH DETAIL
...