Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 57(2): 843-848, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29278498

ABSTRACT

A Sr analogue of Ca0.5Bi0.5FeO3, Sr0.5Bi0.5FeO3, containing unusually high valence Fe3.5+ ions was synthesized by using a high-pressure technique. It relieves the electronic instability due to the unusually high valence of Fe3.5+ by a single charge disproportionation (CD) transition (Fe3.5+ → 0.75Fe3+ + 0.25Fe5+) rather than the successive CD and intermetallic charge transfer (CT) transitions seen in Ca0.5Bi0.5FeO3. Conduction-band narrowing due to the significant bend in the Fe-O-Fe bond in the rhombohedral R3̅c crystal structure stabilized the charge-disproportionated state at low temperatures. Most importantly, Bi3+ ions in Sr0.5Bi0.5FeO3 do not act as countercations accepting oxygen holes as they do in Ca0.5Bi0.5FeO3, resulting in the absence of the intermetallic CT transition. The large cavity of the A-site Sr ions prevents the charge-transferred Bi5+ from being stabilized. In the charge-disproportionated state the nearest-neighbor Fe3+ spins align antiferromagnetically and one-fourth of the Fe3+ spins are randomly replaced by Fe5+ spins coupled ferromagnetically with the neighboring Fe3+ spins.

2.
Inorg Chem ; 56(6): 3695-3701, 2017 Mar 20.
Article in English | MEDLINE | ID: mdl-28277653

ABSTRACT

A-site-ordered layer-structured perovskite LaCa2Fe3O9 with unusually high valence Fe3.67+ was obtained by low-temperature topochemical oxidation of the A-site layer-ordered LaCa2Fe3O8. The unusually high valence Fe3.67+ in LaCa2Fe3O9 shows charge disproportionation of Fe3+ and Fe5+ first along the layer-stacking ⟨010⟩ direction below 230 K. Fe3+ is located between the La3+ and Ca2+ layers, while Fe5+ is between the Ca2+ layers. The two-dimensional electrostatic potential due to the A-site layered arrangement results in the quasi-stable ⟨010⟩ charge ordering pattern. Below 170 K, the charge ordering pattern changes, and the 2:1 charge-disproportionated Fe3+ and Fe5+ ions are ordered along the ⟨111⟩ direction. The ground-state charge ordering pattern is stabilized primarily by the electrostatic lattice energy, and the Fe5+ ions are arranged to make the distances between the nearest neighboring Fe5+ as large as possible.

3.
Angew Chem Int Ed Engl ; 56(15): 4243-4246, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28319301

ABSTRACT

A perovskite-structure oxide containing unusually high-valence Fe3.5+ was obtained by high-pressure synthesis. Instability of the Fe3.5+ in Ca0.5 Bi0.5 FeO3 is relieved first by charge disproportionation at 250 K and then by intermetallic charge transfer between A-site Bi and B-site Fe at 200 K. These previously unobserved successive charge transitions are due to competing intermetallic and disproportionation charge instabilities. Both transitions change magnetic and structural properties significantly, indicating strong coupling of charge, spin, and lattice in the present system.

4.
Inorg Chem ; 55(21): 11529-11537, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27783495

ABSTRACT

Synthesis, characterization, and thermal modification of the new layered perovskite FeLa2Ti3O10 have been studied. FeLa2Ti3O10 was prepared by ion exchange of the triple-layered Ruddlesden-Popper phase Li2La2Ti3O10 with FeCl2 at 350 °C under static vacuum. Rietveld refinement on synchrotron X-ray diffraction data indicates that the new phase is isostructural with CoLa2Ti3O10, where FeII cations occupy slightly compressed/flattened interlayer tetrahedral sites. Magnetic measurements on FeLa2Ti3O10 display Curie-Weiss behavior at high temperatures and a spin-glass transition at lower temperatures (<30 K). Thermal treatment in oxygen shows that FeLa2Ti3O10 undergoes a significant cell contraction (Δc ≈ -2.7 Å) with a change in the oxidation state of iron (Fe2+ to Fe3+); structural analysis and Mössbauer studies indicate that upon oxidation the local iron environment goes from tetrahedral to octahedral coordination with some deintercalation of iron as Fe2O3 to produce Fe0.67La2Ti3O10.

5.
Inorg Chem ; 55(12): 6218-22, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27257713

ABSTRACT

A double perovskite-structure oxide La2LiFeO6 with unusually high-valence Fe(5+) was synthesized using a high-pressure technique. The Li(+) and Fe(5+) ions at the B site in the rhombohedral R3̅ perovskite structure are ordered in a rock salt manner, and the resultant tetrahedral network of Fe(5+) gives geometrical spin frustration, which is consistent with a large frustration index f (|θ|/TN) ≈ 10. Mg(2+) substitution for Li(+) produces Fe(4+) from some Fe(5+) and changes the magnetic properties. The Weiss temperature is increased from -119 to 21 K by the substitution of only 1%, significantly decreasing the frustration index. The geometrical frustration of the Fe(5+) spin sublattice cannot be tolerant for even a very small amount of Fe(4+) disturbance.

6.
ACS Nano ; 10(7): 6680-4, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27341006

ABSTRACT

Atomic-resolution quantification of the elemental ratio of Fe to Mn at the octahedral and tetrahedral sites in brownmillerite Ca2Fe1.07Mn0.93O5 was determined using electron energy-loss spectroscopy combined with aberration-corrected scanning transmission electron microscopy. The combined techniques revealed that oversampling of the spectral imaging data yielded a spatially resolved area that very nearly reflects atomic resolution (∼1.2 Šradius). The average experimental ratios of Fe to Mn within this region were 17.5:82.5 for the octahedral sites and 81.6:18.4 for the tetrahedral sites. The elemental ratio in an octahedral atomic column was successfully extracted by estimating the mixing of signals from nearest neighbor columns. The results indicated that the ratio of Fe to Mn was 13:87 at the octahedral site, which is in good agreement with the results of neutron diffraction analysis. In addition, the uncertainty of experimental results obtained by using an average 1.2 Šradius was less than 10% at octahedral sites, depending on the sample thickness. In contrast, the experimental error due to dechanneling of incident electrons was larger at the tetrahedral sites. This experimental procedure has wide application for determining the spatially resolved composition ratio of elements in perovskite-like compounds.

7.
Angew Chem Int Ed Engl ; 55(4): 1360-3, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26662847

ABSTRACT

Novel cubic perovskites SrFe(1-x)Ni(x)O3 (0≤x≤0.5) with unusual high-valence iron(IV) and nickel(IV) ions were obtained by high-pressure and high-temperature synthesis. Substantial magnetic moments of Ni(IV), which is intrinsically nonmagnetic with a nominal d(6) electron configuration, were induced by the large magnetic moments of Fe(IV) through orbital hybridization with oxygen. As a result, ferromagnetism with the transition temperature (T(c)) above room temperature could be induced.

8.
J Am Chem Soc ; 137(23): 7468-73, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-26018730

ABSTRACT

The crystal and magnetic structures of charge-disproportionated Ca2FeMnO6 were analyzed by neutron powder diffraction. Ca2FeMnO6 is a layered double perovskite oxide with a two-dimensional arrangement of Mn(4+) and unusual high valence Fe(4+) at room temperature. When cooled, the compound shows charge disproportionation followed by magnetic transition. Around 200 K, the Fe(4+) shows the charge disproportionation to Fe(3+) and Fe(5+), which are ordered in a checkerboard pattern in the two-dimensional FeO6 octahedral layers. The magnetic transition occurs at 95 K, which is much lower than the charge disproportionation temperature. The magnetic structure is commensurate but noncollinear, and the antiferromagnetic coupling of Fe(3+) and Fe(5+) spins in the FeO6 octahedral layers gives the ferrimagnetic moments. The unique magnetic structure is described as a result of two-dimensional localization of the ligand holes with effective spins.

SELECTION OF CITATIONS
SEARCH DETAIL
...