Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38645209

ABSTRACT

Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will only be maintained if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity. We show that 74-94% of the variance in aneuploid strains' growth rates is explained by the additive cost of genes on each chromosome, measured for single-gene duplications using a genomic library, along with the deleterious contribution of snoRNAs and beneficial effects of tRNAs. Machine learning to identify properties of detrimental gene duplicates provided no support for the balance hypothesis of aneuploidy toxicity and instead identified gene length as the best predictor of toxicity. Our results present a generalized framework for the cost of aneuploidy with implications for disease biology and evolution.

2.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659764

ABSTRACT

Aneuploidy produces myriad consequences in health and disease, yet models of the deleterious effects of chromosome amplification are still widely debated. To distinguish the molecular determinants of aneuploidy stress, we measured the effects of duplicating individual genes in cells with varying chromosome duplications, in wild-type cells and cells sensitized to aneuploidy by deletion of RNA-binding protein Ssd1. We identified gene duplications that are nearly neutral in wild-type euploid cells but significantly deleterious in euploids lacking SSD1 or SSD1+ aneuploid cells with different chromosome duplications. Several of the most deleterious genes are linked to translation; in contrast, duplication of other translational regulators, including eI5Fa Hyp2, benefit ssd1Δ aneuploids over controls. Using modeling of aneuploid growth defects, we propose that the deleterious effects of aneuploidy emerge from an interaction between the cumulative burden of many amplified genes on a chromosome and a subset of duplicated genes that become toxic in that context. Our results suggest that the mechanism behind their toxicity is linked to a key vulnerability in translation in aneuploid cells. These findings provide a perspective on the dual impact of individual genes and overall genomic burden, offering new avenues for understanding aneuploidy and its cellular consequences.

3.
G3 (Bethesda) ; 13(10)2023 09 30.
Article in English | MEDLINE | ID: mdl-37481264

ABSTRACT

Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene overexpression, revealing that the fitness costs of copy-number variation can vary substantially with genetic background in a common-garden environment. But the interplay between copy-number variation tolerance and environment remains unexplored on a genomic scale. Here, we measured the tolerance to gene overexpression in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride stress. Overexpressed genes that are commonly deleterious during sodium chloride stress recapitulated those commonly deleterious under standard conditions. However, sodium chloride stress uncovered novel differences in strain responses to gene overexpression. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to sodium chloride stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to overexpression of specific genes. Although most genes were deleterious, hundreds were beneficial when overexpressed-remarkably, most of these effects were strain specific. Few beneficial genes were shared between the sodium chloride-sensitive isolates, implicating mechanistic differences behind their sodium chloride sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural copy-number variation of a sodium export pump that likely contributes to strain-specific responses to overexpression of other genes. Our results reveal extensive strain-by-environment interactions in the response to gene copy-number variation, raising important implications for the accessibility of copy-number variation-dependent evolutionary routes under times of stress.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Sodium Chloride , Gene-Environment Interaction , Gene Dosage , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
4.
bioRxiv ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37503218

ABSTRACT

Variation in gene copy number can alter gene expression and influence downstream phenotypes; thus copy-number variation (CNV) provides a route for rapid evolution if the benefits outweigh the cost. We recently showed that genetic background significantly influences how yeast cells respond to gene over-expression (OE), revealing that the fitness costs of CNV can vary substantially with genetic background in a common-garden environment. But the interplay between CNV tolerance and environment remains unexplored on a genomic scale. Here we measured the tolerance to gene OE in four genetically distinct Saccharomyces cerevisiae strains grown under sodium chloride (NaCl) stress. OE genes that are commonly deleterious during NaCl stress recapitulated those commonly deleterious under standard conditions. However, NaCl stress uncovered novel differences in strain responses to gene OE. West African strain NCYC3290 and North American oak isolate YPS128 are more sensitive to NaCl stress than vineyard BC187 and laboratory strain BY4743. Consistently, NCYC3290 and YPS128 showed the greatest sensitivities to gene OE. Although most genes were deleterious, hundreds were beneficial when overexpressed - remarkably, most of these effects were strain specific. Few beneficial genes were shared between the NaCl-sensitive isolates, implicating mechanistic differences behind their NaCl sensitivity. Transcriptomic analysis suggested underlying vulnerabilities and tolerances across strains, and pointed to natural CNV of a sodium export pump that likely contributes to strain-specific responses to OE of other genes. Our results reveal extensive strain-by-environment interaction in the response to gene CNV, raising important implications for the accessibility of CNV-dependent evolutionary routes under times of stress.

5.
Elife ; 112022 11 09.
Article in English | MEDLINE | ID: mdl-36350693

ABSTRACT

Stress defense and cell growth are inversely related in bulk culture analyses; however, these studies miss substantial cell-to-cell heterogeneity, thus obscuring true phenotypic relationships. Here, we devised a microfluidics system to characterize multiple phenotypes in single yeast cells over time before, during, and after salt stress. The system measured cell and colony size, growth rate, and cell-cycle phase along with nuclear trans-localization of two transcription factors: stress-activated Msn2 that regulates defense genes and Dot6 that represses ribosome biogenesis genes during an active stress response. By tracking cells dynamically, we discovered unexpected discordance between Msn2 and Dot6 behavior that revealed subpopulations of cells with distinct growth properties. Surprisingly, post-stress growth recovery was positively corelated with activation of the Dot6 repressor. In contrast, cells lacking Dot6 displayed slower growth acclimation, even though they grow normally in the absence of stress. We show that wild-type cells with a larger Dot6 response display faster production of Msn2-regulated Ctt1 protein, separable from the contribution of Msn2. These results are consistent with the model that transcriptional repression during acute stress in yeast provides a protective response, likely by redirecting translational capacity to induced transcripts.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Acclimatization , Phenotype , Gene Expression Regulation, Fungal , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
6.
Elife ; 102021 08 02.
Article in English | MEDLINE | ID: mdl-34338637

ABSTRACT

Copy number variation through gene or chromosome amplification provides a route for rapid phenotypic variation and supports the long-term evolution of gene functions. Although the evolutionary importance of copy-number variation is known, little is understood about how genetic background influences its tolerance. Here, we measured fitness costs of over 4000 overexpressed genes in 15 Saccharomyces cerevisiae strains representing different lineages, to explore natural variation in tolerating gene overexpression (OE). Strain-specific effects dominated the fitness costs of gene OE. We report global differences in the consequences of gene OE, independent of the amplified gene, as well as gene-specific effects that were dependent on the genetic background. Natural variation in the response to gene OE could be explained by several models, including strain-specific physiological differences, resource limitations, and regulatory sensitivities. This work provides new insight on how genetic background influences tolerance to gene amplification and the evolutionary trajectories accessible to different backgrounds.


Subject(s)
DNA Copy Number Variations , Evolution, Molecular , Gene Expression , Genetic Fitness , Genetic Variation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Genetic Background , Genome, Fungal , Genomics , Phenotype
7.
Genetics ; 217(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33734361

ABSTRACT

Individuals carrying an aberrant number of chromosomes can vary widely in their expression of aneuploidy phenotypes. A major unanswered question is the degree to which an individual's genetic makeup influences its tolerance of karyotypic imbalance. Here we investigated within-species variation in aneuploidy prevalence and tolerance, using Saccharomyces cerevisiae as a model for eukaryotic biology. We analyzed genotypic and phenotypic variation recently published for over 1,000 S. cerevisiae strains spanning dozens of genetically defined clades and ecological associations. Our results show that the prevalence of chromosome gain and loss varies by clade and can be better explained by differences in genetic background than ecology. The relationships between lineages with high aneuploidy frequencies suggest that increased aneuploidy prevalence emerged multiple times in S. cerevisiae evolution. Separate from aneuploidy prevalence, analyzing growth phenotypes revealed that some genetic backgrounds-such as the European Wine lineage-show fitness costs in aneuploids compared to euploids, whereas other clades with high aneuploidy frequencies show little evidence of major deleterious effects. Our analysis confirms that chromosome gain can produce phenotypic benefits, which could influence evolutionary trajectories. These results have important implications for understanding genetic variation in aneuploidy prevalence in health, disease, and evolution.


Subject(s)
Aneuploidy , Genetic Fitness , Genetic Variation , Saccharomyces cerevisiae/genetics , Evolution, Molecular , Genetic Background
8.
Elife ; 92020 01 07.
Article in English | MEDLINE | ID: mdl-31909711

ABSTRACT

Aneuploidy is highly detrimental during development yet common in cancers and pathogenic fungi - what gives rise to differences in aneuploidy tolerance remains unclear. We previously showed that wild isolates of Saccharomyces cerevisiae tolerate chromosome amplification while laboratory strains used as a model for aneuploid syndromes do not. Here, we mapped the genetic basis to Ssd1, an RNA-binding translational regulator that is functional in wild aneuploids but defective in laboratory strain W303. Loss of SSD1 recapitulates myriad aneuploidy signatures previously taken as eukaryotic responses. We show that aneuploidy tolerance is enabled via a role for Ssd1 in mitochondrial physiology, including binding and regulating nuclear-encoded mitochondrial mRNAs, coupled with a role in mitigating proteostasis stress. Recapitulating ssd1Δ defects with combinatorial drug treatment selectively blocked proliferation of wild-type aneuploids compared to euploids. Our work adds to elegant studies in the sensitized laboratory strain to present a mechanistic understanding of eukaryotic aneuploidy tolerance.


Subject(s)
Aneuploidy , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
9.
Curr Biol ; 28(16): 2673-2680.e4, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30078561

ABSTRACT

Stress tolerance and rapid growth are often competing interests in cells. Upon severe environmental stress, many organisms activate defense systems concurrent with growth arrest. There has been debate as to whether aspects of the stress-activated transcriptome are regulated by stress or an indirect byproduct of reduced proliferation. For example, stressed Saccharomyces cerevisiae cells mount a common gene expression program called the environmental stress response (ESR) [1] comprised of ∼300 induced (iESR) transcripts involved in stress defense and ∼600 reduced (rESR) mRNAs encoding ribosomal proteins (RPs) and ribosome biogenesis factors (RiBi) important for division. Because ESR activation also correlates with reduced growth rate in nutrient-restricted chemostats and prolonged G1 in slow-growing mutants, an alternate proposal is that the ESR is simply a consequence of reduced division [2-5]. A major challenge is that past studies did not separate effects of division arrest and stress defense; thus, the true responsiveness of the ESR-and the purpose of stress-dependent rESR repression in particular-remains unclear. Here, we decoupled cell division from the stress response by following transcriptome, proteome, and polysome changes in arrested cells responding to acute stress. We show that the ESR cannot be explained by changes in growth rate or cell-cycle phase during stress acclimation. Instead, failure to repress rESR transcripts reduces polysome association of induced transcripts, delaying production of their proteins. Our results suggest that stressed cells alleviate competition for translation factors by removing mRNAs and ribosomes from the translating pool, directing translational capacity toward induced transcripts to accelerate protein production.


Subject(s)
Cell Division/genetics , RNA, Fungal/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/physiology , Schizosaccharomyces/physiology , Stress, Physiological/genetics , Polyribosomes/genetics , Polyribosomes/metabolism , Proteome/genetics , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Transcriptome/genetics
10.
PLoS Genet ; 14(2): e1007217, 2018 02.
Article in English | MEDLINE | ID: mdl-29474395

ABSTRACT

Cellulosic plant biomass is a promising sustainable resource for generating alternative biofuels and biochemicals with microbial factories. But a remaining bottleneck is engineering microbes that are tolerant of toxins generated during biomass processing, because mechanisms of toxin defense are only beginning to emerge. Here, we exploited natural diversity in 165 Saccharomyces cerevisiae strains isolated from diverse geographical and ecological niches, to identify mechanisms of hydrolysate-toxin tolerance. We performed genome-wide association (GWA) analysis to identify genetic variants underlying toxin tolerance, and gene knockouts and allele-swap experiments to validate the involvement of implicated genes. In the process of this work, we uncovered a surprising difference in genetic architecture depending on strain background: in all but one case, knockout of implicated genes had a significant effect on toxin tolerance in one strain, but no significant effect in another strain. In fact, whether or not the gene was involved in tolerance in each strain background had a bigger contribution to strain-specific variation than allelic differences. Our results suggest a major difference in the underlying network of causal genes in different strains, suggesting that mechanisms of hydrolysate tolerance are very dependent on the genetic background. These results could have significant implications for interpreting GWA results and raise important considerations for engineering strategies for industrial strain improvement.


Subject(s)
Drug Tolerance/genetics , Genetic Variation , Saccharomyces cerevisiae/genetics , Toxins, Biological/toxicity , Biomass , Fermentation , Gene Knockout Techniques , Gene-Environment Interaction , Genome, Fungal , Genome-Wide Association Study , Hydrolysis , Lignin/chemistry , Lignin/metabolism , Lignin/toxicity , Organisms, Genetically Modified , Phenotype , Phylogeny , Saccharomyces cerevisiae/classification
11.
PLoS Biol ; 15(12): e2004050, 2017 12.
Article in English | MEDLINE | ID: mdl-29240790

ABSTRACT

From bacteria to humans, individual cells within isogenic populations can show significant variation in stress tolerance, but the nature of this heterogeneity is not clear. To investigate this, we used single-cell RNA sequencing to quantify transcript heterogeneity in single Saccharomyces cerevisiae cells treated with and without salt stress to explore population variation and identify cellular covariates that influence the stress-responsive transcriptome. Leveraging the extensive knowledge of yeast transcriptional regulation, we uncovered significant regulatory variation in individual yeast cells, both before and after stress. We also discovered that a subset of cells appears to decouple expression of ribosomal protein genes from the environmental stress response in a manner partly correlated with the cell cycle but unrelated to the yeast ultradian metabolic cycle. Live-cell imaging of cells expressing pairs of fluorescent regulators, including the transcription factor Msn2 with Dot6, Sfp1, or MAP kinase Hog1, revealed both coordinated and decoupled nucleocytoplasmic shuttling. Together with transcriptomic analysis, our results suggest that cells maintain a cellular filter against decoupled bursts of transcription factor activation but mount a stress response upon coordinated regulation, even in a subset of unstressed cells.


Subject(s)
Saccharomyces cerevisiae/physiology , Sodium Chloride/pharmacology , Stress, Physiological , Genetic Variation , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Sequence Analysis, RNA , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factors/physiology , Transcriptome
12.
Elife ; 5: e14409, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-26949252

ABSTRACT

In our prior work by Hose et al., we performed a genome-sequencing survey and reported that aneuploidy was frequently observed in wild strains of S. cerevisiae. We also profiled transcriptome abundance in naturally aneuploid isolates compared to isogenic euploid controls and found that 10-30% of amplified genes, depending on the strain and affected chromosome, show lower-than-expected expression compared to gene copy number. In Hose et al., we argued that this gene group is enriched for genes subject to one or more modes of dosage compensation, where mRNA abundance is decreased in response to higher dosage of that gene. A recent manuscript by Torres et al. refutes our prior work. Here, we provide a response to Torres et al., along with additional analysis and controls to support our original conclusions. We maintain that aneuploidy is well tolerated in the wild strains of S. cerevisiae that we studied and that the group of genes enriched for those subject to dosage compensation show unique evolutionary signatures.


Subject(s)
Aneuploidy , Gene Dosage , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Gene Expression Profiling , Gene Expression Regulation, Fungal , RNA, Messenger/analysis
14.
Elife ; 42015 May 08.
Article in English | MEDLINE | ID: mdl-25955966

ABSTRACT

Aneuploidy is linked to myriad diseases but also facilitates organismal evolution. It remains unclear how cells overcome the deleterious effects of aneuploidy until new phenotypes evolve. Although laboratory strains are extremely sensitive to aneuploidy, we show here that aneuploidy is common in wild yeast isolates, which show lower-than-expected expression at many amplified genes. We generated diploid strain panels in which cells carried two, three, or four copies of the affected chromosomes, to show that gene-dosage compensation functions at >30% of amplified genes. Genes subject to dosage compensation are under higher expression constraint in wild populations-but they show elevated rates of gene amplification, suggesting that copy-number variation is buffered at these genes. We find that aneuploidy provides a clear ecological advantage to oak strain YPS1009, by amplifying a causal gene that escapes dosage compensation. Our work presents a model in which dosage compensation buffers gene amplification through aneuploidy to provide a natural, but likely transient, route to rapid phenotypic evolution.


Subject(s)
Aneuploidy , Dosage Compensation, Genetic , Gene Dosage , Genes, Fungal , Models, Genetic , Saccharomyces cerevisiae/genetics , Biological Evolution , Genetic Variation , Linear Models , Phenotype , Selection, Genetic
15.
Mol Syst Biol ; 10: 759, 2014 Nov 19.
Article in English | MEDLINE | ID: mdl-25411400

ABSTRACT

Stressed cells coordinate a multi-faceted response spanning many levels of physiology. Yet knowledge of the complete stress-activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho-proteome changes in cells responding to salt stress, to infer the salt-responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown 'hubs' of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress-defense genes with reduction of growth-related transcripts. We find that the orthologous human network is enriched for cancer-causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/metabolism , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genetic Fitness , Protein Tyrosine Phosphatases/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Sodium Chloride/metabolism , Stress, Physiological
16.
PLoS Genet ; 7(11): e1002353, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22102822

ABSTRACT

In nature, stressful environments often occur in combination or close succession, and thus the ability to prepare for impending stress likely provides a significant fitness advantage. Organisms exposed to a mild dose of stress can become tolerant to what would otherwise be a lethal dose of subsequent stress; however, the mechanism of this acquired stress tolerance is poorly understood. To explore this, we exposed the yeast gene-deletion libraries, which interrogate all essential and non-essential genes, to successive stress treatments and identified genes necessary for acquiring subsequent stress resistance. Cells were exposed to one of three different mild stress pretreatments (salt, DTT, or heat shock) and then challenged with a severe dose of hydrogen peroxide (H(2)O(2)). Surprisingly, there was little overlap in the genes required for acquisition of H(2)O(2) tolerance after different mild-stress pretreatments, revealing distinct mechanisms of surviving H(2)O(2) in each case. Integrative network analysis of these results with respect to protein-protein interactions, synthetic-genetic interactions, and functional annotations identified many processes not previously linked to H(2)O(2) tolerance. We tested and present several models that explain the lack of overlap in genes required for H(2)O(2) tolerance after each of the three pretreatments. Together, this work shows that acquired tolerance to the same severe stress occurs by different mechanisms depending on prior cellular experiences, underscoring the context-dependent nature of stress tolerance.


Subject(s)
Gene Expression/drug effects , Gene Regulatory Networks/genetics , Heat-Shock Response/genetics , Hydrogen Peroxide/toxicity , Oxidative Stress/genetics , Saccharomyces cerevisiae/genetics , Stress, Physiological/genetics , Genetic Fitness/genetics , Heat-Shock Proteins/genetics , Heat-Shock Response/physiology , Hot Temperature , Hydrogen Peroxide/pharmacology , Multilocus Sequence Typing , Oligonucleotide Array Sequence Analysis/methods , Saccharomyces cerevisiae/physiology , Sodium Chloride/pharmacology
17.
Mol Syst Biol ; 7: 514, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21772262

ABSTRACT

The transcriptome and proteome change dynamically as cells respond to environmental stress; however, prior proteomic studies reported poor correlation between mRNA and protein, rendering their relationships unclear. To address this, we combined high mass accuracy mass spectrometry with isobaric tagging to quantify dynamic changes in ~2500 Saccharomyces cerevisiae proteins, in biological triplicate and with paired mRNA samples, as cells acclimated to high osmolarity. Surprisingly, while transcript induction correlated extremely well with protein increase, transcript reduction produced little to no change in the corresponding proteins. We constructed a mathematical model of dynamic protein changes and propose that the lack of protein reduction is explained by cell-division arrest, while transcript reduction supports redistribution of translational machinery. Furthermore, the transient 'burst' of mRNA induction after stress serves to accelerate change in the corresponding protein levels. We identified several classes of post-transcriptional regulation, but show that most of the variance in protein changes is explained by mRNA. Our results present a picture of the coordinated physiological responses at the levels of mRNA, protein, protein-synthetic capacity, and cellular growth.


Subject(s)
Gene Expression Profiling/methods , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatography, Liquid , Gene Expression Regulation, Fungal , Models, Theoretical , Oligonucleotide Array Sequence Analysis , Osmolar Concentration , Proteome/genetics , Proteomics/methods , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/genetics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...