Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 268(10): 6886-95, 1993 Apr 05.
Article in English | MEDLINE | ID: mdl-8463219

ABSTRACT

These studies examined the ability of ATP to stimulate transport of the organic cation tetraethylammonium (TEA) into proximal tubular brush border membrane vesicles. ATP markedly enhanced TEA uptake for 1 h or more to values severalfold above those observed in the absence of ATP. The poorly hydrolyzable analogue of ATP, AMP-PNP (adenyl-5'-yl imidodiphosphate), reduced the effect of ATP but alone did not stimulate TEA uptake. GTP and ITP also stimulated TEA uptake, whereas other nucleotides did not. ATP-stimulated TEA uptake was saturable, temperature-dependent, and markedly reduced by the organic cations amiloride, quinidine, cimetidine, and verapamil, but only modestly reduced by the organic cations N'-methylnicotinamide and choline. Some inhibitors of other transport ATPases, including N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide, and oligomycin, reduced the effect of ATP, whereas ouabain, vanadate, and azide did not. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid also reduced TEA uptake in the presence of ATP. Vinblastine, but not actinomycin D and colchicine (all inhibitors of P-glycoprotein-mediated transport), reduced TEA uptake. The reduction of TEA transport by amiloride and cimetidine was most consistent with competitive inhibition, whereas the inhibition produced by N-ethylmaleimide and vinblastine evidently was not. ATP also stimulated uptake of N'-methylnicotinamide but not that of vinblastine. These studies have identified a previously unrecognized process by which ATP hydrolysis may directly energize the reabsorption of organic cations from the renal tubule lumen.


Subject(s)
Adenosine Triphosphate/metabolism , Kidney Cortex/metabolism , Tetraethylammonium Compounds/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Animals , Biological Transport , Buffers , Kidney Cortex/ultrastructure , Kinetics , Male , Microvilli/metabolism , Rabbits , Temperature , Tetraethylammonium , Vanadates/pharmacology
2.
Am J Physiol ; 263(6 Pt 1): G939-46, 1992 Dec.
Article in English | MEDLINE | ID: mdl-1335694

ABSTRACT

Hepatocyte basolateral membrane possesses transport systems for mediated uptake of organic cations, the first step in the subsequent biliary excretion and/or metabolism of these compounds. The purpose of these studies was to evaluate potential mechanisms for transport of this class of solutes across this membrane by measuring 3H-labeled tetraethylammonium ([3H]TEA) transport into rat hepatocyte basolateral membrane vesicles. [3H]TEA uptake was stimulated by an outwardly directed proton gradient consistent with TEA-proton exchange. Proton gradient-stimulated [3H]TEA uptake was inhibited by quinidine and by the combination of valinomycin and carbonyl cyanide m-chlorophenylhydrazone (CCCP) but not by CCCP alone or by N1-methylnicotinamide (NMN). An outwardly directed TEA gradient also stimulated uptake of [3H]TEA with values at early time points exceeding those at equilibrium. This trans-stimulation or countertransport was saturable with an apparent Michaelis constant of 106 microM and maximal velocity of 434 pmol.mg-1.15 s-1. TEA countertransport was cis-inhibited by quinidine, cimetidine, and thiamine and by low temperature, but not by NMN. Thiamine was also capable of trans-stimulating [3H]TEA uptake. An outwardly directed potassium gradient enhanced and an inwardly directed potassium gradient reduced TEA countertransport but had no effect on [3H]TEA uptake occurring in the absence of other electrochemical driving forces. These studies indicate that there are at least two potential mechanisms in the hepatocyte basolateral membrane for transport of organic cations; organic cation-organic cation exchange (countertransport) and organic cation-proton exchange. Furthermore, the results are consistent with the existence of more than one transporter with different substrate affinities in each of these categories.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cations/metabolism , Liver/metabolism , Animals , Biological Transport , Cations/pharmacology , Ion Exchange , Liver/cytology , Protons , Rats , Tetraethylammonium , Tetraethylammonium Compounds/antagonists & inhibitors , Tetraethylammonium Compounds/pharmacokinetics
3.
J Clin Invest ; 86(4): 1076-83, 1990 Oct.
Article in English | MEDLINE | ID: mdl-2170445

ABSTRACT

Most HCO3- reabsorption in proximal tubules occurs via electroneutral Na+/H+ exchange in brush border membranes (BBMS) and electrogenic Na+:CO3=:HCO3- cotransport in basolateral membranes (BLMS). Since potassium depletion (KD) increases HCO3- reabsorption in proximal tubules, we evaluated these transport systems using BBM and BLM vesicles, respectively, from control (C) and KD rats. Feeding rats a potassium deficient diet for 3-4 wk resulted in lower plasma [K+] (2.94 mEq/liter, KD vs. 4.47 C), and higher arterial pH (7.51 KD vs. 7.39 C). KD rats gained less weight than C but had higher renal cortical weight. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0, 10% CO2, 90% N2) into BLM vesicles was 44% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was DIDS sensitive, suggesting that Na+:CO3=:HCO3- cotransport accounted for the observed differences. Kinetic analysis of Na+ influx showed a Km of 8.2 mM in KD vs. 7.6 mM in C and Vmax of 278 nmol/min/mg protein in KD vs. 177 nmol/min/mg protein in C. Influx of 1 mM 22Na+ at 5 s (pHo 7.5, pHi 6.0) into BBM vesicles was 34% higher in the KD group compared to C with no difference in equilibrium uptake. The increment in Na+ influx in the KD group was amiloride sensitive, suggesting that Na+/H+ exchange was responsible for the observed differences. Kinetic analysis of Na+ influx showed a Km of 6.2 mM in KD vs. 7.1 mM in C and Vmax of 209 nmol/min/mg protein in KD vs. 144 nmol/min/mg protein in C. Uptakes of Na(+)-dependent [3H]glucose into BBM and [14C]succinate into BLM vesicles were not different in KD and C groups, suggesting that the Na+/H+ exchanger and Na+:CO3=:HCO3- cotransporter activities were specifically altered in KD. We conclude that adaptive increases in basolateral Na+:CO3=:HCO3- cotransport and luminal Na+H+ exchange are likely responsible for increased HCO3- reabsorption in proximal tubules of KD animals.


Subject(s)
Bicarbonates/metabolism , Kidney Cortex/metabolism , Potassium/physiology , Sodium/metabolism , Animals , Biological Transport , Carbonates/metabolism , Hydrogen-Ion Concentration , Male , Protons , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...